共查询到2条相似文献,搜索用时 0 毫秒
1.
Richard A. Rebich Natalie A. Houston Scott V. Mize Daniel K. Pearson Patricia B. Ging C. Evan Hornig 《Journal of the American Water Resources Association》2011,47(5):1061-1086
Rebich, Richard A., Natalie A. Houston, Scott V. Mize, Daniel K. Pearson, Patricia B. Ging, and C. Evan Hornig, 2011. Sources and Delivery of Nutrients to the Northwestern Gulf of Mexico From Streams in the South‐Central United States. Journal of the American Water Resources Association (JAWRA) 47(5):1061‐1086. DOI: 10.1111/j.1752‐1688.2011.00583.x Abstract: SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed to estimate nutrient inputs [total nitrogen (TN) and total phosphorus (TP)] to the northwestern part of the Gulf of Mexico from streams in the South‐Central United States (U.S.). This area included drainages of the Lower Mississippi, Arkansas‐White‐Red, and Texas‐Gulf hydrologic regions. The models were standardized to reflect nutrient sources and stream conditions during 2002. Model predictions of nutrient loads (mass per time) and yields (mass per area per time) generally were greatest in streams in the eastern part of the region and along reaches near the Texas and Louisiana shoreline. The Mississippi River and Atchafalaya River watersheds, which drain nearly two‐thirds of the conterminous U.S., delivered the largest nutrient loads to the Gulf of Mexico, as expected. However, the three largest delivered TN yields were from the Trinity River/Galveston Bay, Calcasieu River, and Aransas River watersheds, while the three largest delivered TP yields were from the Calcasieu River, Mermentau River, and Trinity River/Galveston Bay watersheds. Model output indicated that the three largest sources of nitrogen from the region were atmospheric deposition (42%), commercial fertilizer (20%), and livestock manure (unconfined, 17%). The three largest sources of phosphorus were commercial fertilizer (28%), urban runoff (23%), and livestock manure (confined and unconfined, 23%). 相似文献
2.
All JD 《Environmental management》2007,40(1):7-11
In this issue of Environmental Management, Glenn and others posit that a previous study had analytical and interpretive errors
in analysis of shrimp fishing in the Upper Gulf of California, Mexico. Unfortunately, much of their evidence is too indirect
and of insufficient scale to address the central question of salinity in the Upper Gulf. Also, many of their suppositions
did not include direct interviews with local officials or a robust understanding of remote sensing literature. This response
to their rebuttal presents a set of figures and analysis demonstrating that the Colorado River flows into a closed evaporative
basin known as the Laguna Salada and thus cannot flow into the Gulf of California. Readers are asked to examine the images
and interpret their meaning for themselves. 相似文献