首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preisser EL  Orrock JL  Schmitz OJ 《Ecology》2007,88(11):2744-2751
Predators can affect prey populations through changes in traits that reduce predation risk. These trait changes (nonconsumptive effects, NCEs) can be energetically costly and cause reduced prey activity, growth, fecundity, and survival. The strength of nonconsumptive effects may vary with two functional characteristics of predators: hunting mode (actively hunting, sit-and-pursue, sit-and-wait) and habitat domain (the ability to pursue prey via relocation in space; can be narrow or broad). Specifically, cues from fairly stationary sit-and-wait and sit-and-pursue predators should be more indicative of imminent predation risk, and thereby evoke stronger NCEs, compared to cues from widely ranging actively hunting predators. Using a meta-analysis of 193 published papers, we found that cues from sit-and-pursue predators evoked stronger NCEs than cues from actively hunting predators. Predator habitat domain was less indicative of NCE strength, perhaps because habitat domain provides less reliable information regarding imminent risk to prey than does predator hunting mode. Given the importance of NCEs in determining the dynamics of prey communities, our findings suggest that predator characteristics may be used to predict how changing predator communities translate into changes in prey. Such knowledge may prove particularly useful given rates of local predator change due to habitat fragmentation and the introduction of novel predators.  相似文献   

2.
Trussell GC  Matassa CM  Luttbeg B 《Ecology》2011,92(9):1799-1806
There is strong evidence that the way prey respond to predation risk can be fundamentally important to the structuring and functioning of natural ecosystems. The majority of work on such nonconsumptive predator effects (NCEs) has examined prey responses under constant risk or constant safety. Hence, the importance of temporal variation in predation risk, which is ubiquitous in natural systems, has received limited empirical attention. In addition, tests of theory (e.g., the risk allocation hypothesis) on how prey allocate risk have relied almost exclusively on the behavioral responses of prey to variation in risk. In this study, we examined how temporal variation in predation risk affected NCEs on prey foraging and growth. We found that high risk, when predictable, was just as energetically favorable to prey as safe environments that are occasionally pulsed by risk. This pattern emerged because even episodic pulses of risk in otherwise safe environments led to strong NCEs on both foraging and growth. However, NCEs more strongly affected growth than foraging, and we suggest that such effects on growth are most important to how prey ultimately allocate risk. Hence, exclusive focus on behavioral responses to risk will likely provide an incomplete understanding of how NCEs shape individual fitness and the dynamics of ecological communities.  相似文献   

3.
Creel S 《Ecology》2011,92(12):2190-2195
Risk effects, or the costs of antipredator behavior, can comprise a large proportion of the total effect of predators on their prey. While empirical studies are accumulating to demonstrate the importance of risk effects, there is no general theory that predicts the relative importance of risk effects and direct predation. Working toward this general theory, it has been shown that functional traits of predators (e.g., hunting modes) help to predict the importance of risk effects for ecosystem function. Here, I note that attributes of the predator, the prey, and the environment are all important in determining the strength of antipredator responses, and I develop hypotheses for the ways that prey functional traits might influence the magnitude of risk effects. In particular, I consider the following attributes of prey: group size and dilution of direct predation risk, the degree of foraging specialization, body mass, and the degree to which direct predation is additive vs. compensatory. Strong tests of these hypotheses will require continued development of methods to identify and quantify the fitness costs of antipredator responses in wild populations.  相似文献   

4.
The reintroduction of large predators provides a framework to investigate responses by prey species to predators. Considerable research has been directed at the impact that reintroduced wolves (Canis lupus) have on cervids, and to a lesser degree, bovids, in northern temperate regions. Generally, these impacts alter feeding, activity, and ranging behavior, or combinations of these. However, there are few studies on the response of African bovids to reintroduced predators, and thus, there is limited data to compare responses by tropical and temperate ungulates to predator reintroductions. Using the reintroduction of lion (Panthera leo) into the Addo Elephant National Park (AENP) Main Camp Section, South Africa, we show that Cape buffalo (Syncerus caffer) responses differ from northern temperate ungulates. Following lion reintroduction, buffalo herds amalgamated into larger, more defendable units; this corresponded with an increase in the survival of juvenile buffalo. Current habitat preference of buffalo breeding herds is for open habitats, especially during the night and morning, when lion are active. The increase in group size and habitat preference countered initial high levels of predation on juvenile buffalo, resulting in a return in the proportion of juveniles in breeding herds to pre-lion levels. Our results show that buffalo responses to reintroduced large predators in southern Africa differ to those of northern temperate bovids or cervids in the face of wolf predation. We predict that the nature of the prey response to predator reintroduction is likely to reflect the trade-off between the predator selection and hunting strategy of predators against the life history and foraging strategies of each prey species.  相似文献   

5.
Studies that focus on single predator-prey interactions can be inadequate for understanding antipredator responses in multi-predator systems. Yet there is still a general lack of information about the strategies of prey to minimize predation risk from multiple predators at the landscape level. Here we examined the distribution of seven African ungulate species in the fenced Karongwe Game Reserve (KGR), South Africa, as a function of predation risk from all large carnivore species (lion, leopard, cheetah, African wild dog, and spotted hyena). Using observed kill data, we generated ungulate-specific predictions of relative predation risk and of riskiness of habitats. To determine how ungulates minimize predation risk at the landscape level, we explicitly tested five hypotheses consisting of strategies that reduce the probability of encountering predators, and the probability of being killed. All ungulate species avoided risky habitats, and most selected safer habitats, thus reducing their probability of being killed. To reduce the probability of encountering predators, most of the smaller prey species (impala, warthog, waterbuck, kudu) avoided the space use of all predators, while the larger species (wildebeest, zebra, giraffe) only avoided areas where lion and leopard space use were high. The strength of avoidance for the space use of predators generally did not correspond to the relative predation threat from those predators. Instead, ungulates used a simpler behavioral rule of avoiding the activity areas of sit-and-pursue predators (lion and leopard), but not those of cursorial predators (cheetah and African wild dog). In general, selection and avoidance of habitats was stronger than avoidance of the predator activity areas. We expect similar decision rules to drive the distribution pattern of ungulates in other African savannas and in other multi-predator systems, especially where predators differ in their hunting modes.  相似文献   

6.
We present a new predator-prey model where, except for the prey growth, assumed to be logistic, we endeavor to give some behavioral justification to all elements of the predator-prey interaction. The functional response takes account of predator satiation and predator competition. It is supported by some experimental evidence. We distinguish two contributions to the numerical response: the positive part, proportional to the functional response, is the birth rate of predators; the negative part is the death rate due to hunger.Two outcomes are possible. If the prey are unable to grow fast enough to replace the amount killed by the predators, both species become extinct. In the opposite case, both populations stabilize at a constant population. At this equilibrium level, the prey are not abundant enough to satiate the predators.The predation rate that allows the highest predator population is one half of the ideal prey growth rate. A higher exploitation rate can allow higher populations only temporarily. Evolved predator behavior, reguges for the prey, or other mechanisms can explain this regulation.Two more population behaviors (cycles and predator extinction) can be obtained with a time-lag in one of the responses. This is shown in a separate paper.The model is structurally stable. It can thus withstand small environmental perturbations.  相似文献   

7.
Summary The threat-sensitive predator avoidance hypothesis predicts that prey can assess the relative threat posed by a predator and adjust their behaviour to reflect the magnitude of the threat. We tested the ability of larval threespine sticklebacks to adjust their foraging in the presence of predators by exposing them to conspecific predators of various sizes and recording their foraging and predator avoidance behaviours. Larvae (<30 days post-hatch) displayed predator escape behaviours only towards attacking predators. At 3 weeks post-hatch larvae approached the predator after fleeing, a behaviour which may be the precursor to predator inspection. Larvae reduced foraging and spent less time in the proximity of large and medium-sized predators compared to small predators. The reduction in foraging was negatively correlated to the predator/larva size ratio, indicating that larvae increased their foraging as they increased in size relative to the predator. We conclude that larval sticklebacks can assess the threat of predation early in their ontogeny and adjust their behaviour accordingly.Correspondence to: J.A. Brown  相似文献   

8.
Carnivore predation on livestock is a complex management and policy challenge, yet it is also intrinsically an ecological interaction between predators and prey. Human–wildlife interactions occur in socioecological systems in which human and environmental processes are closely linked. However, underlying human–wildlife conflict and key to unpacking its complexity are concrete and identifiable ecological mechanisms that lead to predation events. To better understand how ecological theory accords with interactions between wild predators and domestic prey, we developed a framework to describe ecological drivers of predation on livestock. We based this framework on foundational ecological theory and current research on interactions between predators and domestic prey. We used this framework to examine ecological mechanisms (e.g., density-mediated effects, behaviorally mediated effects, and optimal foraging theory) through which specific management interventions operate, and we analyzed the ecological determinants of failure and success of management interventions in 3 case studies: snow leopards (Panthera uncia), wolves (Canis lupus), and cougars (Puma concolor). The varied, context-dependent successes and failures of the management interventions in these case studies demonstrated the utility of using an ecological framework to ground research and management of carnivore–livestock conflict. Mitigation of human–wildlife conflict appears to require an understanding of how fundamental ecological theories work within domestic predator–prey systems.  相似文献   

9.
Although predators can affect foraging behaviors of floral visitors, rarely is it known if these top-down effects of predators may cascade to plant fitness through trait-mediated interactions. In this study we manipulated artificial crab spiders on flowers of Rubus rosifolius to test the effects of predation risk on flower-visiting insects and strength of trait-mediated indirect effects to plant fitness. In addition, we tested which predator traits (e.g., forelimbs, abdomen) are recognized and avoided by pollinators. Total visitation rate was higher for control flowers than for flowers with an artificial crab spider. In addition, flowers with a sphere (simulating a spider abdomen) were more frequently visited than those with forelimbs or the entire spider model. Furthermore, the presence of artificial spiders decreased individual seed set by 42% and fruit biomass by 50%. Our findings indicate that pollinators, mostly bees, recognize and avoid flowers with predation risk; forelimbs seem to be the predator trait recognized and avoided by hymenopterans. Additionally, predator avoidance by pollinators resulted in pollen limitation, thereby affecting some components of plant fitness (fruit biomass and seed number). Because most pollinator species that recognized predation risk visited many other plant species, trait-mediated indirect effects of spiders cascading down to plant fitness may be a common phenomenon in the Atlantic rainforest ecosystem.  相似文献   

10.
Functional responses: a question of alternative prey and predator density   总被引:2,自引:0,他引:2  
Tschanz B  Bersier LF  Bacher S 《Ecology》2007,88(5):1300-1308
Throughout the study of ecology, there has been a growing realization that indirect effects among species cause complexity in food webs. Understanding and predicting the behavior of ecosystems consequently depends on our ability to identify indirect effects and their mechanisms. The present study experimentally investigates indirect interactions arising between two prey species that share a common predator. In a natural field experiment, we introduced different densities of mealworms (Tenebrio molitor), an alternative prey, to a previously studied predator-prey system in which paper wasps (Polistes dominulus) preyed on shield beetle larvae (Cassida rubiginosa). We tested if alternative prey affects predation on the first prey (i.e., the predator-dependent functional response of paper wasps) by modifying either interference among predators or the effective number of predators foraging on shield beetles. Presence of mealworms significantly reduced the effective number of predators, whereas predator interference was not affected. In this way, the experimentally introduced alternative prey altered the wasps' functional response and thereby indirectly influenced C. rubiginosa density. In all prey-density combinations offered, paper wasps constantly preferred T. molitor. This led to an asymmetrical, indirect interaction between both prey species: an increase in mealworm density significantly relaxed predation on C. rubiginosa, whereas an increase in C. rubiginosa density intensified predation on mealworms. Such asymmetrical outcomes of a fixed food preference can significantly affect the population dynamics of the species involved. In spite of the repeated finding of a Type III functional response in this system, our experiment did not reveal switching behavior in paper wasps. The variety of mechanisms underlying direct and indirect interactions within our study system exemplifies the importance of incorporating alternative prey when investigating the impact of a generalist predator on a focal prey population under realistic field conditions.  相似文献   

11.
Summary Behavioral resource depression occurs when the behavior of prey individuals changes in response to the presence of a predator, resulting in a reduction of the encounter rate of the predator with its prey. Here I present experimental evidence on the response of two species of gerbils (Gerbillus allenbyi and G. pyramidum) to the presence of barn owls. I conducted the experiments in a large aviary. Both gerbils responded to the presence of barn owl predators by foraging in fewer resource patches (seed trays) and by quitting foraged resource patches at a higher resource harvest rate (giving-up density of resource; GUD). This reduced the amount of time gerbils were exposed to owl predation, and hence the encounter rate of owls with gerbils, i.e., behavioral resource depression. Thus, the presence of owls imposes a foraging cost on gerbils due to risk of predation, and also on the owls themselves due to resource depression. I then examined how resource depression relaxed over time following exposure to owls. In the days following an encounter with the predator, the reduction in foraging activity for both gerbil species eased. Increasing numbers of trays were foraged each day, and GUDs in seed trays declined. The two gerbils differed in their rate of recovery, with G. pyramidum returning to prepredator levels of foraging after 1 or 2 nights and G. allenbyi taking 5 nights or longer. Interspecific differences in recovery rates may be based on differences between the species in vulnerability to predation and/or ability to detect the presence of predators. The differences in recovery rates may be due to optimal memory windows or decay rates, where differences between species are based on risk of predation or on how perceived risk changes with time since a predator was last encountered. Finally, differences between or among competitors in recovery from resource depression may provide foraging opportunities in time for the species which recover most quickly and may have implications for species coexistence.  相似文献   

12.
Antipredator behavior studies generally assess prey responses to single predator species although most real systems contain multiple species. In multi-predator environments prey ideally use antipredator responses that are effective against all predator species, although responses may only be effective against one predator and counterproductive for another. Multi-predator systems may also include introduced predators that the prey did not co-evolve with, so the prey may either fail to recognize their threat (level 1 naiveté), use ineffective responses (level 2 naiveté) or succumb to their superior hunting ability (level 3 naiveté). We analyzed microhabitat selection of an Australian marsupial (koomal, Trichosurus vulpecula hypoleucus) when faced with spatiotemporal differences in the activity/density levels of one native (chuditch, Dasyurus geoffroii) and two introduced predators (red fox, Vulpes vulpes; feral cat, Felis catus). From this, we inferred whether koomal recognized introduced predators as a threat, and whether they minimized predation risk by either staying close to trees and/or using open or dense microhabitats. Koomal remained close to escape trees regardless of the predator species present, or activity/density levels, suggesting koomal employ this behavior as a first line of defense. Koomal shifted to dense cover only under high risk scenarios (i.e., with multiple predator species present at high densities). When predation risk was low, koomal used open microhabitats, which likely provided benefits not associated with predator avoidance. Koomal did not exhibit level 1 naiveté, although further studies are required to determine if they exhibit higher levels of naiveté (2–3) against foxes and cats.  相似文献   

13.
Despite growing interest in ecological interactions between predators and pathogens, few studies have experimentally examined the consequences of infection for host predation risk or how environmental conditions affect this relationship. Here we combined mesocosm experiments, in situ foraging data, and broad-scale lake surveys to evaluate (1) the effects of chytrid infection (Polycaryum laeve) on susceptibility of Daphnia to fish predators and (2) how environmental characteristics moderate the strength of this interaction. In mesocosms, bluegill preferred infected Daphnia 2-5 times over uninfected individuals. Among infected Daphnia, infection intensity was a positive predictor of predation risk, whereas carapace size and fecundity increased predation on uninfected individuals. Wild-caught yellow perch and bluegill from in situ foraging trials exhibited strong selectivity for infected Daphnia (3-10 times over uninfected individuals). In mesocosms containing water high in dissolved organic carbon (DOC), however, selective predation on infected Daphnia was eliminated. Correspondingly, lakes that supported chytrid infections had higher DOC levels and lower light penetration. Our results emphasize the strength of interactions between parasitism and predation while highlighting the moderating influence of water color. P. laeve increases the conspicuousness and predation risk of Daphnia; as a result, infected Daphnia occur predominantly in environments with characteristics that conceal their elevated visibility.  相似文献   

14.
Matassa CM  Trussell GC 《Ecology》2011,92(12):2258-2266
Predators can initiate trophic cascades by consuming and/or scaring their prey. Although both forms of predator effect can increase the overall abundance of prey's resources, nonconsumptive effects may be more important to the spatial and temporal distribution of resources because predation risk often determines where and when prey choose to forage. Our experiment characterized temporal and spatial variation in the strength of consumptive and nonconsumptive predator effects in a rocky intertidal food chain consisting of the predatory green crab (Carcinus maenas), an intermediate consumer (the dogwhelk, Nucella lapillus), and barnacles (Semibalanus balanoides) as a resource. We tracked the survival of individual barnacles through time to map the strength of predator effects in experimental communities. These maps revealed striking spatiotemporal patterns in Nucella foraging behavior in response to each predator effect. However, only the nonconsumptive effect of green crabs produced strong spatial patterns in barnacle survivorship. Predation risk may play a pivotal role in determining the small-scale distribution patterns of this important rocky intertidal foundation species. We suggest that the effects of predation risk on individual foraging behavior may scale up to shape community structure and dynamics at a landscape level.  相似文献   

15.
We evaluated the effects of potential predators from intertidal habitats on Strongylocentrotus purpuratus survival using laboratory experiments and assessed abundances of main predatory species along the Pacific coast of North America. The interactive effects of urchins’ and predators’ sizes in mediating predation were quantified. Habitat complexity (substrate pits, adult spine canopy) was manipulated to examine its effects on predation of most susceptible individuals (<14 mm). Pachygrapsus crassipes was identified as a major predator of urchins up to ≈30 mm. A positive effect of predator size on consumption of progressively larger urchins was detected, probably due to a mechanical limitation on crabs’ ability to consume large prey. Larger claws of males with respect to females of comparable sizes facilitated the handling of larger prey. Substrate refuges significantly reduced mortality on juvenile urchins. These results show that crab predation may be important in organizing intertidal communities, despite multiple ecological mechanisms promoting sea urchin survival.  相似文献   

16.
Kitzberger T  Chaneton EJ  Caccia F 《Ecology》2007,88(10):2541-2554
Resource pulses often involve extraordinary increases in prey availability that "swamp" consumers and reverberate through indirect interactions affecting other community members. We developed a model that predicts predator-mediated indirect effects induced by an epidemic prey on co-occurring prey types differing in relative profitability/preference and validated our model by examining current-season and delayed effects of a bamboo mass seeding event on seed survival of canopy tree species in mixed Patagonian forests. The model shows that predator foraging behavior, prey profitability, and the scale of prey swamping influence the character and strength of short-term indirect effects on various alternative prey. When in large prey-swamped patches, nonselective predators decrease predation on all prey types. Selective predators, instead, only benefit prey of similar quality to the swamping species, while very low or high preference prey remain unaffected. Negative indirect effects (apparent competition) may override such positive effects (apparent mutualism), especially for highly preferred prey, when prey-swamped patches are small enough to allow predator aggregation and/or predators show a reproductive numerical response to elevated food supply. Seed predation patterns during bamboo (Chusquea culeou) masting were consistent with predicted short-term indirect effects mediated by a selective predator foraging in large prey-swamped patches. Bamboo seeds and similarly-sized Austrocedrus chilensis (ciprés) and Nothofagus obliqua (roble) seeds suffered lower predation in bamboo flowered than nonflowered patches. Predation rates on the small-seeded Nothofagus dombeyi (coihue) and the large-seeded Nothofagus alpina (rauli) were independent of bamboo flowering. Indirect positive effects were transient; three months after bamboo seeding, granivores preyed heavily upon all seed types, irrespective of patch flowering condition. Moreover, one year after bamboo seeding, predation rates on the most preferred seed (rauli) was higher in flowered than in nonflowered patches. Despite rapid predator numerical responses, short-term positive effects can still influence community recruitment dynamics because surviving seeds may find refuge beneath the litter produced by bamboo dieback. Together, our theoretical analysis and experiments indicate that indirect effects experienced by alternative prey during and after prey-swamping episodes need not be universal but can change across a prey quality spectrum, and they critically depend on predator-foraging rules and the spatial scale of swamping.  相似文献   

17.
Prey often adopt antipredator strategies to reduce the likelihood of predation. In the presence of predators, prey may use antipredator strategies that are effective against a single predator (specific) or that are effective against several predators (nonspecific). Most studies have been confined to single predator environments although prey are often faced with multiple predators. When more than one predator is present, specific antipredator behaviours can conflict and avoidance of one predator may increase vulnerability to another. To test how prey cope with this dilemma, I recorded the behaviours of lizards responding to the nonlethal cues of a bird and snake presented singly and simultaneously. Lizards use specific and conflicting antipredator tactics when confronted with each predator, as evidenced by refuge use. However, when both predators were present, lizards refuge use was the same as in the predator-free environment, indicating that they abandoned refuge use as a primary mechanism for predator avoidance. In the presence of both predators, they reduced their overall movement and time spent thermoregulating. This shift in behaviour may represent a compromise to minimize overall risk, following a change in predator exposure. This provides evidence of plasticity in lizard antipredator behaviour and shows that prey responses to two predators cannot be accurately predicted from what is observed when only one predator is present.Communicated by W. Cooper  相似文献   

18.
Scavenging is an important but poorly understood ecological process. Dominant scavengers can impose a selection pressure that alters the predator’s fitness, morphology, behavior, and ecology. Interactions between ursids, likely the most important dominant scavengers in the Holarctic region, and solitary felids, which are characterized by long feeding times, provide a good opportunity for studying the effects of kleptoparasitism by dominant scavengers. We analyzed the effects of scavenging by brown bears Ursus arctos on Eurasian lynx Lynx lynx and predator’s response to kleptoparasitism in a European temperate forest ecosystem. Bears found 32?% of lynx prey remains and 15?% of all biomass of large prey killed by lynx was lost to bears. In response, lynx increased their kill rate by 23?% but were able to compensate for only 59?% of the losses. The frequency of bear scavenging was strongly dependent on bear activity patterns and was highest during the lynx pregnancy and lactation period, when up to half of lynx kills were usurped by bears. We suggest that ursid scavenging, by promoting the hunting of smaller prey, may have played an important role in the evolution of the Lynx genus as well as other predators in the Holarctic. Our study indicates that prey loss to dominant scavengers is a widespread phenomenon among felids worldwide, including forest habitats. We highlight several implications of scavenging that could considerably improve our understanding of the ecology of vertebrate communities and the evolution of predators as well as benefit the future management and conservation of endangered predators.  相似文献   

19.
Griswold MW  Lounibos LP 《Ecology》2006,87(4):987-995
Multiple predator species can interact as well as strongly affect lower trophic levels, resulting in complex, nonadditive effects on prey populations and community structure. Studies of aquatic systems have shown that interactive effects of predators on prey are not necessarily predictable from the direct effects of each species alone. To test for complex interactions, the individual and combined effects of a top and intermediate predator on larvae of native and invasive mosquito prey were examined in artificial analogues of water-filled treeholes. The combined effects of the two predators were accurately predicted from single predator treatments by a multiplicative risk model, indicating additivity. Overall survivorship of both prey species decreased greatly in the presence of the top predator Toxorhynchites rutilus. By itself, the intermediate predator Corethrella appendiculata increased survivorship of the native prey species Ochlerotatus triseriatus and decreased survivorship of the invasive prey species Aedes albopictus relative to treatments without predators. Intraguild predation did not occur until alternative prey numbers had been reduced by approximately one-half. Owing to changes in size structure accompanying its growth, T. rutilus consumed more prey as time progressed, whereas C. appendiculata consumed less. The intermediate predator, C. appendiculata, changed species composition by preferentially consuming A. albopictus, while the top predator, T. rutilus, reduced prey density, regardless of species. Although species interactions were in most cases predicted from pairwise interactions, risk reduction from predator interference occurred when C. appendiculata densities were increased and when the predators were similarly sized.  相似文献   

20.
Understanding prey response to predators and their utilization of sensory cues to assess local predation risk is crucial in determining how predator avoidance strategies affect population demographics. This study examined the antipredator behaviors of two ecologically similar species of Caribbean coral reef fish, Coryphopterus glaucofraenum and Gnatholepis thompsoni, and characterized their responses to different reef predators. In laboratory assays, the two species of gobies were exposed to predator visual cues (native Nassau grouper predator vs. invasive lionfish predator), damage-released chemical cues from gobies, and combinations of these, along with appropriate controls. Behavioral responses indicate that the two prey species differ in their utilization of visual and chemical cues. Visual cues from predators were decisive for both species’ responses, demonstrating their relative importance in the sensory hierarchy, whereas damage-released cues were a source of information only for C. glaucofraenum. Both prey species could distinguish between native and invasive predators and subsequently altered their antipredator responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号