共查询到20条相似文献,搜索用时 15 毫秒
1.
Landscape flux potentials for biogenic volatile organic compounds (BVOCs) were derived for three ecosystems in the continental U.S. (Fernbank Forest, Atlanta, GA; Willow Creek, Rhinelander, WI; Temple Ridge, CO). Analytical data from branch enclosure measurements were combined with ecological survey data for plant species composition and biomass. Other quantitative flux measurements at the leaf and landscape level were incorporated to scale the results from the enclosure measurements to the landscape level. Flux estimates were derived by using a one week ambient temperature and light record (30 min time resolution) and adjusting all emission rates to these conditions with temperature and light correction algorithms. 相似文献
2.
《Atmospheric environment (Oxford, England : 1994)》2002,36(23):3793-3802
Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCs) at a lowland tropical wet forest site in Costa Rica. Ten of the species examined emitted substantial quantities of isoprene. These species accounted for 35–50% of the total basal area of old-growth forest on the major edaphic site types, indicating that a high proportion of the canopy leaf area is a source of isoprene. A limited number of canopy-level BVOC flux measurements were also collected by relaxed eddy accumulation (REA). These measurements verify that the forest canopy in this region is indeed a significant source of isoprene. In addition, REA fluxes of methanol and especially acetone were also significant, exceeding model estimates and warranting future investigation at this site. Leaf monoterpene emissions were non-detectable or very low from the species surveyed, and ambient concentrations and REA fluxes likewise were very low. Although the isoprene emission rates reported here are largely consistent with phylogenetic relations found in other studies (at the family, genus, and species levels), two species in the family Mimosaceae, a group previously found to consist largely of non-isoprene emitters, emitted significant quantities of isoprene. One of these, Pentaclethra macroloba (Willd.) Kuntze, is by far the most abundant canopy tree species in the forests of this area, composing 30–40% of the total basal area. The other, Zygia longifolia (Humb. & Bonpl.) Britton & Rose is a common riparian species. Our results suggest that the source strength of BVOCs is important not only to tropical atmospheric chemistry, but also may be important in determining net ecosystem carbon exchange. 相似文献
3.
Myeong Y. Chung Matt Beene Shawn Ashkan Charles Krauter Alam S. Hasson 《Atmospheric environment (Oxford, England : 1994)》2010,44(6):786-794
Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006–2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies. 相似文献
4.
Evaluation of total volatile organic compound emissions from adhesives based on chamber tests 总被引:1,自引:0,他引:1
Guo H Murray F Wilkinson S 《Journal of the Air & Waste Management Association (1995)》2000,50(2):199-206
In 1997, Homeswest in western Australia and Murdoch University developed a project to construct low-allergen houses (LAHs) in a newly developed suburb. Before the construction of LAHs, all potential volatile organic compound (VOC) emission materials used in LAHs are required to be measured to ensure that they are low total VOC (TVOC) emission materials. This program was developed based on this purpose. In recent times, the number of complaints about indoor air pollution caused by VOCs has increased. A number of surveys of indoor VOCs have indicated that many indoor materials contribute to indoor air pollution. Although some studies have been conducted on the characteristics of VOC emissions from adhesives, most of them were focused on VOC emissions from floor adhesives. Few measurements of VOC emissions from adhesives used for wood, fabrics, and leather are available. Furthermore, most research on VOC emissions from adhesives has been done in countries with cool climates, where ventilation rates in the indoor environment are lower than those in Mediterranean climates, due to energy conservation. VOCs emitted from adhesives have not been sufficiently researched to prepare an emission inventory to predict indoor air quality and to determine both exposure levels for the Australian population and the most appropriate strategies to reduce exposure. An environmental test chamber with controlled temperature, relative humidity, and airflow rate was used to evaluate emissions of TVOCs from three adhesives used frequently in Australia. The quantity of TVOC emissions was measured by a gas chromatography/flame ionization detector. The primary VOCs emitted from each adhesive were detected by gas chromatography/mass spectrometry. The temporal change of TVOC concentrations emitted from each adhesive was tested. A double-exponential equation was then developed to evaluate the characteristics of TVOC emissions from these three adhesives. With this double-exponential model, the physical processes of TVOC emissions can be explained, and a variety of emission parameters can be calculated. These emission parameters could be used to estimate real indoor TVOC concentrations in Mediterranean climates. 相似文献
5.
Warner KS Eatough DJ Stockburger L 《Journal of the Air & Waste Management Association (1995)》2001,51(9):1302-1308
Correct assessment of fine particulate carbonaceous material as a function of particle size is, in part, dependent on the determination of semi-volatile compounds, which can be lost from particles during sampling. This study gives results obtained for the collection of fine particulate carbonaceous material at three eastern U.S. sampling sites [Philadelphia, PA; Shenandoah National Park, VA; and Research Triangle Park (RTP), NC] using diffusion denuder technology. The diffusion denuder samplers allow for the determination of fine particulate organic material with no artifacts, due to the loss of semi-volatile organic particulate compounds, or collection of gas-phase organic compounds by the quartz filter during sampling. The results show that an average of 41, 43, and 59% of fine particulate organic material was lost as volatilized semi-volatile organic material during collection of particles on a filter at Philadelphia, RTP, and Shenandoah, respectively. The particle size distribution of carbonaceous material retained by a filter and lost from a filter during sampling was obtained for the samples collected at Philadelphia and Shenandoah. The carbonaceous material retained by the particles during sampling was found predominantly in particles smaller than 0.4 microm in aerodynamic diameter. In contrast, the semi-volatile organic material lost from the particles during sampling had a mass median diameter of approximately 0.5 microm. 相似文献
6.
Choi YJ Calabrese RV Ehrman SH Dickerson RR Stehr JW 《Journal of the Air & Waste Management Association (1995)》2006,56(2):169-178
Emissions inventories significantly affect photochemical air quality model performance and the development of effective control strategies. However, there have been very few studies to evaluate their accuracy. Here, to evaluate a volatile organic compound (VOC) emissions inventory, we implemented a combined approach: comparing the ratios of carbon bond (CB)-IV VOC groups to nitrogen oxides (NOx) or carbon monoxide (CO) using an emission preprocessing model, comparing the ratios of VOC source contributions from a source apportionment technique to NOx or CO, and comparing ratios of CB-IV VOC groups to NOx or CO and the absolute concentrations of CB-IV VOC groups using an air quality model, with the corresponding ratios and concentrations observed at three sites (Maryland, Washington, DC, and New Jersey). The comparisons of the ethene/NOx ratio, the xylene group (XYL)/NOx ratio, and ethene and XYL concentrations between estimates and measurements showed some differences, depending on the comparison approach, at the Maryland and Washington, DC sites. On the other hand, consistent results at the New Jersey site were observed, implying a possible overestimation of vehicle exhaust. However, in the case of the toluene group (TOL), which is emitted mainly from surface coating and printing sources in the solvent utilization category, the ratios of TOL/ NOx or CO, as well as the absolute concentrations revealed an overestimate of these solvent sources by a factor of 1.5 to 3 at all three sites. In addition, the overestimate of these solvent sources agreed with the comparisons of surface coating and printing source contributions relative to NOx from a source apportionment technique to the corresponding value of estimates at the Maryland site. Other studies have also suggested an overestimate of solvent sources, implying a possibility of inaccurate emission factors in estimating VOC emissions from surface coating and printing sources. We tested the impact of these overestimates with a chemical transport model and found little change in ozone but substantial changes in calculated secondary organic aerosol concentrations. 相似文献
7.
This study attempts to assess the effectiveness of control strategies for reducing volatile organic compound (VOC) emission from the polyvinyl chloride (PVC) wallpaper production industry. In Taiwan, methyl ethyl ketone, TOL, and cyclohexanone have comprised the major content of solvents, accounting for approximately 113,000 t/yr to avoid excessive viscosity of plasticizer dioctyl phthalate (DOP) and to increase facility in working. Emissions of these VOCs from solvents have caused serious odor and worse air quality problems. In this study, 80 stacks in five factories were tested to evaluate emission characteristics at each VOC source. After examining the VOC concentrations in the flue gases and contents, the VOC emission rate before treatment and from fugitive sources was 93,000 and 800 t/yr, respectively. In this study, the semiwet electrostatic precipitator is recommended for use as cost-effective control equipment. 相似文献
8.
Contribution of the gasoline distribution cycle to volatile organic compound emissions in the metropolitan area of Mexico City 总被引:1,自引:0,他引:1
Schifter I Magdaleno M Díaz L Krüger B León J Palmerín ME Casas R Melgarejo A López-Salinas E 《Journal of the Air & Waste Management Association (1995)》2002,52(5):535-541
Gasoline distribution in the metropolitan area of Mexico City (MAMC) represents an area of opportunity for the abatement of volatile organic compound (VOC) emissions. The gasoline distribution in this huge urban center encompasses several operations: (1) storage in bulk and distribution plants, (2) transportation to gasoline service stations, (3) unloading at service stations' underground tanks, and (4) gasoline dispensing. In this study, hydrocarbon (HC) emissions resulting from breathing losses in closed reservoirs, leakage, and spillage from the operations just listed were calculated using both field measurements and reported emission factors. The results show that the contribution of volatile HC emissions due to storage, distribution, and sales of gasoline is 6651 t/year, approximately 13 times higher than previously reported values. Tank truck transportation results in 53.9% of the gasoline emissions, and 31.5% of emissions are generated when loading the tank trucks. The high concentration of emissions in the gasoline transportation and loading operations by tank trucks has been ascribed to (1) highly frequent trips from distribution plant to gasoline stations, and vice versa, to cope with excessive gasoline sales per gasoline station; (2) low leakproofness of tank trucks; and (3) poor training of employees. In addition, the contribution to HC evaporative and exhaust emissions from the vehicles of the MAMC was also evaluated. 相似文献
9.
Two biofilters were operated to treat a waste gas stream intended to simulate off-gases generated during the manufacture of reformulated paint. The model waste gas stream consisted of a five-component solvent mixture containing acetone (450 ppm(v)), methyl ethyl ketone (12 ppm(v)), toluene (29 ppm(v)), ethylbenzene (10 ppm(v)), and p-xylene (10 ppm(v)). The two biofilters, identical in construction and packed with a polyurethane foam support medium, were inoculated with an enrichment culture derived from compost and then subjected to different loading conditions during the startup phase of operation. One biofilter was subjected to intermittent loading conditions with contaminants supplied only 8 hr/day to simulate loading conditions expected at facilities where manufacturing operations are discontinuous. The other biofilter was subjected to continuous contaminant loading during the initial start period, and then was switched to intermittent loading conditions. Experimental results demonstrate that both startup strategies can ultimately achieve high contaminant removal efficiency (>99%) at a target contaminant mass loading rate of 80.3 g m(-3) hr(-1) and an empty bed residence time of 59 sec. The biofilter subjected to intermittent loading conditions at startup, however, took considerably longer to reach high performance. In both biofilters, ketone components (acetone and methyl ethyl ketone) were, more rapidly degraded than aromatic hydrocarbons (toluene, ethylbenzene, and p-xylene). Scanning electron microscopy and plate count data revealed that fungi, as well as bacteria, populated the biofilters. 相似文献
10.
11.
《Atmospheric environment (Oxford, England : 1994)》1999,33(9):1347-1355
Direct emissions and emission of precursor compounds of acetic and formic acid from higher plants are a significant source of these acids in the atmosphere. To travel from the plant cell to the atmosphere, a gas molecule must first leave the liquid phase and then enter the internal leaf gas phase. The apoplast (cell wall) is the last barrier before the molecule can escape through the stomata. During field experiments we monitored the gas exchange (H2O, CO2, organic acids) of Quercus ilex L. leaves. The exchange rates of acetic and formic acid under field conditions followed a typical diurnal pattern and ranged between −10 (uptake) and 52 (emission) nmol m-2 leaf area min-1 with the maximum around noon. Growth chamber experiments indicate that the emission is related to the stomatal conductance. We discussed the exchange rate of organic acids between the cell wall and the atmosphere in connection with Henry’s law, and the physicochemical conditions in the cell wall. The evaluation showed that for apoplastic pH values between 4 and 5, 26–130% of the measured acetic acid emission based on leaf area could be predicted. 相似文献
12.
Dipanjali Majumdar Anjali Srivastava 《Journal of the Air & Waste Management Association (1995)》2013,63(4):398-407
Improper solid waste management leads to aesthetic and environmental problems. Emission of volatile organic compounds (VOCs) is one of the problems from uncontrolled dumpsite. VOCs are well known to be hazardous to human health and many of them are known or potential carcinogens. They also contribute to ozone formation at ground level and climate change as well. The qualitative and quantitative analysis of VOCs emitting from two municipal waste (MSW) disposal sites in Mumbai, India, namely Deonar and Malad, are presented in this paper. Air at dumpsites was sampled and analyzed on gas chromatography–mass spectrometry (GC-MS) in accordance with U.S. Environmental Protection Agency (EPA) TO-17 compendium method for analysis of toxic compounds. As many as 64 VOCs were qualitatively identified, among which 13 are listed under Hazardous Air Pollutants (HAPs). Study of environmental distribution of a few major VOCs indicates that although air is the principal compartment of residence, they also get considerably partitioned in soil and vegetation. The CO2 equivalent of target VOCs from the landfills in Malad and Deonar shows that the total yearly emissions are 7.89E+03 and 8.08E+02 kg, respectively. The total per hour ozone production from major VOCs was found to be 5.34E-01 ppb in Deonar and 9.55E-02 ppb in Malad. The total carcinogenic risk for the workers in the dumpsite considering all target HAPs are calculated to be 275 persons in 1 million in Deonar and 139 persons in 1 million in Malad.
Implications: This paper describes the hazards of VOC emission from open dumpsites, a common practice, in an Indian metro city. The subsequent partitioning of the emitted VOCs in other environmental compartment from air is presented. The global warming potential and the health hazards to the dumpsite workers from the emitted VOCs have also been estimated. 相似文献
13.
Volatile organic compound emissions from municipal solid waste disposal sites: a case study of Mumbai, India 总被引:1,自引:0,他引:1
Majumdar D Srivastava A 《Journal of the Air & Waste Management Association (1995)》2012,62(4):398-407
Improper solid waste management leads to aesthetic and environmental problems. Emission ofvolatile organic compounds (VOCs) is one of the problems from uncontrolled dumpsite. VOCs are well known to be hazardous to human health and many of them are known or potential carcinogens. They also contribute to ozone formation at ground level and climate change as well. The qualitative and quantitative analysis of VOCs emitting from two municipal waste (MSW) disposal sites in Mumbai, India, namely Deonar and Malad, are presented in this paper. Air at dumpsites was sampled and analyzed on gas chromatography-mass spectrometry (GC-MS) in accordance with U.S. Environmental Protection Agency (EPA) TO-17 compendium method for analysis of toxic compounds. As many as 64 VOCs were qualitatively identified, among which 13 are listed under hazardous air pollutants (HAPs). Study of environmental distribution of a few major VOCs indicates that although air is the principal compartment of residence, they also get considerably partitioned in soil and vegetation. The CO2 equivalent of target VOCs from the landfills in Malad and Deonar shows that the total yearly emissions are 7.89E+03 and 8.08E+02 kg, respectively. The total per hour ozone production from major VOCs was found to be 5.34E-01 ppb in Deonar and 9.55E-02 ppb in Malad. The total carcinogenic risk for the workers in the dumpsite considering all target HAPs are calculated to be 275 persons in 1 million in Deonar and 139 persons in 1 million in Malad. 相似文献
14.
Chen CL Fang HY Shu CM 《Journal of the Air & Waste Management Association (1995)》2005,55(10):1487-1497
This paper elucidated a novel approach to locating volatile organic compound (VOC) emission sources and characterizing their VOCs by database and contour plotting. The target of this survey was a petrochemical plant in Linyan, Kaohsiung County, Taiwan. Samples were taken with canisters from 25 sites inside this plant, twice per season, and analyzed by gas chromatography-mass spectrometry. The survey covered 1 whole year. By consolidated into a database, the data could be readily retrieved, statistically analyzed, and clearly presented in both table and graph forms. It followed from the cross-analysis of the database that the abundant types of VOCs were alkanes, alkenes/dienes, and aromatics, all of which accounted for 99% of total VOCs. By contour plotting, the emission sources for alkanes, aromatics, and alkenes/ dienes were successfully located. Through statistical analysis, the database could provide the range and 90% confidence interval of each species from each emission source. Both alkanes and alkene/dienes came from tank farm and naphtha cracking units and were mainly composed of C3-C5 members. Regarding aromatics, benzene, toluene, and xylenes were the primary species; they were emitted from tank farm, aromatic units, and xylene units. 相似文献
15.
Gillies JA Kuhns H Engelbrecht JP Uppapalli S Etyemezian V Nikolich G 《Journal of the Air & Waste Management Association (1995)》2007,57(5):551-560
There is a dearth of information on dust emissions from sources that are unique to the U.S. Department of Defense testing and training activities. However, accurate emissions factors are needed for these sources so that military installations can prepare accurate particulate matter (PM) emission inventories. One such source, coarse and fine PM (PM10 and PM2.5) emissions from artillery backblast testing on improved gun positions, was characterized at the Yuma Proving Ground near Yuma, AZ, in October 2005. Fugitive emissions are created by the shockwave from artillery pieces, which ejects dust from the surface on which the artillery is resting. Other contributions of PM can be attributed to the combustion of the propellants. For a 155-mm howitzer firing a range of propellant charges or zones, amounts of emitted PM10 ranged from -19 g of PM10 per firing event for a zone 1 charge to 92 g of PM10 per firing event for a zone 5. The corresponding rates for PM2.5 were approximately 9 g of PM2.5 and 49 g of PM2.5 per firing. The average measured emission rates for PM1o and PM2.5 appear to scale with the zone charge value. The measurements show that the estimated annual contributions of PM10 (52.2 t) and PM2.5 (28.5 t) from artillery backblast are insignificant in the context of the 2002 U.S. Environment Protection Agency (EPA) PM emission inventory. Using national-level activity data for artillery fire, the most conservative estimate is that backblast would contribute the equivalent of 5 x 10(-4) % and 1.6 x 10(-3)% of the annual total PM10 and PM2.5 fugitive dust contributions, respectively, based on 2002 EPA inventory data. 相似文献
16.
Henschel DB Fortmann RC Roache NF Liu X 《Journal of the Air & Waste Management Association (1995)》2001,51(5):708-717
A laboratory thermal desorption apparatus was used to measure emissions from a number of nominally identical photocopier toners--manufactured to meet the specifications of one specific model copier--when these toners were heated to fuser temperature (180-200 degrees C). The objective was to assess how potential volatile organic compound (VOC) emissions from the toner for a given copier can vary, depending upon the production run and the supplier. Tests were performed on a series of toner (and associated raw polymer feedstock) samples obtained directly from a toner manufacturer, representing two production runs using a nonvented extrusion process, and on toner cartridges purchased from two local retailers, representing three different production lots (histories unknown). The results showed that the retailer toners consistently had up to 350% higher emissions of some major compounds (expressed as microgram of compound emitted/g of toner), and up to 100% lower emissions of others, relative to the manufacturer toners (p < or = 0.01). The manufacturer toners from one production run had emissions of certain compounds, and of total VOCs, that were modestly higher (13-18%) than those from the other run (p < or = 0.01). The emission differences between the retailer and manufacturer toners are probably due to differences in the manufacturing processes and/or feedstocks used to produce the toners from these different sources. 相似文献
17.
Jaana Bäck Hermanni Aaltonen Heidi Hellén Maija K. Kajos Johanna Patokoski Risto Taipale Jukka Pumpanen Jussi Heinonsalo 《Atmospheric environment (Oxford, England : 1994)》2010,44(30):3651-3659
Soils emit a large variety of volatile organic compounds. In natural ecosystems, measurements of microbial volatile organic compound (MVOC) exchange rates between soil and atmosphere are difficult due to e.g. the spatial heterogeneity of the belowground organisms, and due to the many potential sources for the same compounds. We measured in laboratory conditions the MVOC emission rates and spectra of eight typical fungi occurring in boreal forest soils. The studied species are decomposers (Gymnopilus penetrans, Ophiostoma abietinum), ectomycorrhizal (Cenococcum geophilum, Piloderma olivaceum, Suillus variegatus, Tomentellopsis submollis) and endophytic fungi (Meliniomyces variabilis, Phialocephala fortinii). The MVOC emissions contained altogether 21 known and 6 unidentified compounds whose emission rates were >0.1 μg g(DW)?1 h?1. The most abundant compounds were the short-chain carbonyl compounds (acetone and acetaldehyde). The greatest carbonyl emissions were measured from P. olivaceum (1.9 mg acetone g(DW)?1 h?1) and P. fortinii (0.114 mg acetaldehyde g(DW)?1 h?1). Terpenoid emissions (isoprene, mono- and sesquiterpenes) were detected from some fungal cultures, but in relatively small amounts. We conclude that soil micro-organisms can potentially be responsible for significant emissions of volatiles, especially short-chain oxygenated compounds, to the below-canopy atmosphere. 相似文献
18.
Jeffrey C. Quick Eric Marland 《Journal of the Air & Waste Management Association (1995)》2019,69(5):646-658
Carbon dioxide (CO2) emissions from U.S. power plants are independently reported by the U.S. Energy Information Administration (EIA) and the Clean Air Markets Division (CAMD) within the U.S. Environmental Protection Agency (EPA). Differences between the CAMD and EIA emission tallies show that the amount of CO2 produced by an individual power plant is less certain than might be imagined or desired. These differences are attributed to systematic error and random measurement error. Random error cannot be retroactively corrected, whereas systematic error can be corrected where relevant data are available. Accordingly, this study identified and, where possible, corrected systematic error affecting the CAMD and EIA CO2 emission tallies for 1065 power plants that emitted more than 25,000 tons of CO2 during 2013. The EIA tallies were corrected by accounting for emission factor error, acid-gas sorbent consumption, and combustion of biogenic fuel. The CAMD tallies were likewise corrected by accounting for unreported unit emissions. It was not possible to objectively correct systematic error affecting about 11% of the power plants, and subjective corrections were not attempted. At these plants, the CAMD and EIA emission tallies sometimes differed by more than 20% due to missing unit error, plant identification error, temporal measurement error, or inferred reporting error. Comparisons of the CAMD and EIA emission tallies before and after correction for systematic error show the effectiveness of these corrections. The comparisons also show the persistence of random measurement error.
Implications: Understanding the uncertainty of CO2 emission tallies for USA power plants might inform emission inventories, atmospheric flow models or inversions, and emission reduction policies. Knowing the cause and size of measurement errors that contribute to this uncertainty might also help to identify ways to improve the measurement methods and reporting protocols that these CO2 emission tallies are based on. 相似文献
19.
Patrick Faubert Päivi Tiiva Åsmund Rinnan Sanna Räty Jarmo K. Holopainen Toini Holopainen Riikka Rinnan 《Atmospheric environment (Oxford, England : 1994)》2010,44(35):4432-4439
Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (?20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC–MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown. 相似文献
20.
Hai Bao Kundan Lal Shrestha Akira Kondo Akikazu Kaga Yoshio Inoue 《Atmospheric environment (Oxford, England : 1994)》2010,44(3):421-431
Tropospheric ozone adversely affects human health and vegetation, and biogenic volatile organic compound (BVOC) emission has potential to influence ozone concentration in summer season. In this research, the standard emissions of isoprene and monoterpene from the vegetation of the Kinki region of Japan, estimated from growth chamber experiments, were converted into hourly emissions for July 2002 using the temperature and light intensity data obtained from results of MM5 meteorological model. To investigate the effect of BVOC emissions on ozone production, two ozone simulations for one-month period of July 2002 were carried out. In one simulation, hourly BVOC emissions were included (BIO), while in the other one, BVOC emissions were not considered (NOBIO). The quantitative analyses of the ozone results clearly indicate that the use of spatio-temporally varying BVOC emission improves the prediction of ozone concentration. The hourly differences of monthly-averaged ozone concentrations between BIO and NOBIO had the maximum value of 6 ppb at 1400 JST. The explicit difference appeared in urban area, though the place where the maximum difference occurred changed with time. Overall, BVOC emissions from the forest vegetation strongly affected the ozone generation in the urban area. 相似文献