首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Juraske R  Antón A  Castells F 《Chemosphere》2008,70(10):1748-1755
Degradation half-lives in/on vegetation are needed in environmental risk assessment of pesticides, but these data are often not available for most active ingredients. To address this, we first correlated experimental soil degradation half-life data of 41 pesticides obtained from the reviewed literature with the corresponding experimental half-lives on plant surface. Degradation half-lives in soil were found to be four times slower compared with half-lives on plant surfaces. In a second step, we explored measured plant surface half-lives directly with those in vegetation. The results were validated by comparing computed values with results obtained from an experimental set-up. The uptake and dissipation of alpha-cypermethrin (insecticide) and bromopropylate (acaricide) was studied by detecting pesticide residues in whole and peeled tomato fruits using gas chromatography. Half-lives within vegetation were found to be four times faster compared with plant surface half-lives. Using this experimental based approach, it is concluded that the estimation of degradation half-lives of pesticides in/on vegetation to be used as input data in environmental mass balance models can be directly correlated from the more abundant ready experimental degradation half-life data for soil.  相似文献   

2.
Kar S  Roy K 《Chemosphere》2012,87(4):339-355
Different regulatory agencies in food and drug administration and environmental protection worldwide are employing quantitative structure-activity relationship (QSAR) models to fill the data gaps related with properties of chemicals affecting the environment and human health. Carcinogenicity is a toxicity endpoint of major concern in recent times. Interspecies toxicity correlations may provide a tool for estimating sensitivity towards toxic chemical exposure with known levels of uncertainty for a diversity of wildlife species. In this background, we have developed quantitative interspecies structure-carcinogenicity correlation models for rat and mouse [rodent species according to the Organization for Economic Cooperation and Development (OECD) guidelines] based on the carcinogenic potential of 166 organic chemicals with wide diversity of molecular structures, spanning a large number of chemical classes and biological mechanisms. All the developed models have been assessed according to the OECD principles for the validation of QSAR models. Consensus predictions for carcinogenicity of the individual compounds are presented here for any one species when the data for the other species are available. Informative illustrations of the contributing structural fragments of chemicals which are responsible for specific carcinogenicity endpoints are identified by the developed models. The models have also been used to predict mouse carcinogenicities of 247 organic chemicals (for which rat carcinogenicities are present) and rat carcinogenicities of 150 chemicals (for which mouse carcinogenicities are present). Discriminatory features for rat and mouse carcinogenicity values have also been explored.  相似文献   

3.
Environmental Persistence of Chemicals   总被引:1,自引:0,他引:1  
- DOI: http://dx.doi.org/10.1065/espr2006.01.008 Background The hazard criterion of persistence as it applies to chemicals in the environment is reviewed and discussed. This quantity can not be measured directly in the environment, thus it must be estimated using models that synthesise information on chemical half-lives and partitioning properties, the nature of the environment and how the chemical is released into the environment. Main Features It is suggested that the preferred criterion is the average residence time of the chemical in the environment, i.e. conceptually the sum of the life-times of all molecules (attributable only to losses by degrading reactions) divided by the number of molecules. If all chemical fate processes are first order, this persistence is independent of the quantity of chemical introduced and whether introduction is steady- or unsteady-state in nature. It is shown that in a multimedia environment persistence is affected not only by degradation kinetics, but also by mode-of-entry and partitioning. For screening level purposes a Level II equilibrium model may be adequate but a Level III model is generally preferable for estimating the average persistence. If a distribution of persistences is required a dynamic Level IV model must be used. Discussion The implications for regulating chemicals on the basis of persistence are discussed. Conclusion It is concluded that the preferred strategy is to use Level II, III, and IV models and that the use of only degradation kinetics or media-specific half-lives can be misleading and uneconomical.  相似文献   

4.
The European Union System for Evaluation of Substances (EUSES) and the ChemCAN chemical fate model are applied to describe the fate of 68 chemicals on two spatial scales in Japan. Emission information on the chemicals has been obtained from Japan's Pollutant Release and Transfer Registry and available monitoring data gathered from government reports. Environmental concentrations calculated by the two models for the four primary environmental media of air, water, soil and sediment agree within a factor of 3 for over 70% of the data, and within a factor of 10 for over 87% of the data. Reasons for certain large discrepancies are discussed. Concentrations calculated by the models are generally consistent with the lower range of concentrations that are observed in the environment. Agreement between modeled and observed concentrations is considerably improved by including an estimate of the advective input of chemicals in air from outside Japan. The agreement between the EUSES and ChemCAN models suggests that results of individual chemical assessments are not likely to be significantly affected by the choice of chemical fate model. Primary sources of discrepancy between modeled and observed concentrations are believed to be uncertainties in emission rates, degradation half-lives, and the lack of data on advective inflow of contaminants in air.  相似文献   

5.
Gouin T  Cousins I  Mackay D 《Chemosphere》2004,56(6):531-535
Given the paucity of experimental degradation half-life data for most organic chemicals, there is a compelling incentive to use available estimation software when undertaking assessments of chemical persistence and mass balance modeling studies. In this study, half-life data obtained from estimation software for a set of 233 organic chemicals in air, water, soil and sediments were shown to differ significantly from half-life data listed in handbooks. It is suggested that the widely available and used estimation software, EPIWIN (Estimations Program's Interface for Windows), overestimates the reactivity of persistent organic pollutants (POPs). Reasons for this overestimation are explored. It is concluded that the maximum "default half-life values" used by the EPIWIN software are too short for estimating half-lives of highly persistent chemicals such as PCBs. There is a need for estimation software such as EPIWIN to be more thoroughly calibrated against experimental derived half-life data for a wide range of chemicals, including potential POPs, thus improving their reliability.  相似文献   

6.
《Chemosphere》1986,15(4):453-459
Tissue distribution and excretion of hexabromobenzene (HBB) and hexachlorobenzene (HCB) were studied in Wister male rats, after oral administration of these chemicals.There was no difference in the amount of two chemicals excreted in feces for seven days. Their absorption rates through intestine were the same. HBB and HCB also were excreted in urine, but their amounts were very low. Therefore, both chemicals seem to be mainly excreted via feces. HBB and HCB were found to be transported rapidly to all tissues, but the concentrations of HCB were higher than those of HBB in all tissues, indicating the rapid metabolism of HBB. This might be due to the lower bonding energy between bromine and carbon atoms (C6H6-Br: 71kcal/mol) compared to that of chlorine and carbon atoms (C6H6Cl: 86kcal/mol). The half-lives were 0.7 (phase I) and 48 days (phase II) for HBB and 20 days for HCB in whole body. It is noteworthy that the half-life of HBB at phase II is longer than that of HCB.  相似文献   

7.
Thompson K  Zhang J  Zhang C 《Chemosphere》2011,84(8):1066-1071
Effluents from sewage treatment plants (STPs) are known to contain residual micro-contaminants including endocrine disrupting chemicals (EDCs) despite the utilization of various removal processes. Temperature alters the efficacy of removal processes; however, experimental measurements of EDC removal at various temperatures are limited. Extrapolation of EDC behavior over a wide temperature range is possible using available physicochemical property data followed by the correction of temperature dependency. A level II fugacity-based STP model was employed by inputting parameters obtained from the literature and estimated by the US EPA’s Estimations Programs Interface (EPI) including EPI’s BIOWIN for temperature-dependent biodegradation half-lives. EDC removals in a three-stage activated sludge system were modeled under various temperatures and hydraulic retention times (HRTs) for representative compounds of various properties. Sensitivity analysis indicates that temperature plays a significant role in the model outcomes. Increasing temperature considerably enhances the removal of β-estradiol, ethinyestradiol, bisphenol, phenol, and tetrachloroethylene, but not testosterone with the highest biodegradation rate. The shortcomings of BIOWIN were mitigated by the correction of highly temperature-dependent biodegradation rates using the Arrhenius equation. The model predicts well the effects of operating temperature and HRTs on the removal via volatilization, adsorption, and biodegradation. The model also reveals that an impractically long HRT is needed to achieve a high EDC removal. The STP model along with temperature corrections is able to provide some useful insight into the different patterns of STP performance, and useful operational considerations relevant to EDC removal at winter low temperatures.  相似文献   

8.
Accurate quantitative structure–property relationship (QSPR) models based on a large data set containing a total of 3483 organic compounds were developed to predict chemicals’ adsorption capability onto activated carbon in gas phrase. Both global multiple linear regression (MLR) method and local lazy regression (LLR) method were used to develop QSPR models. The results proved that LLR has prediction accuracy 10% higher than that of MLR model. By applying LLR method we can predict the test set (787 compounds) with Q2ext of 0.900 and root mean square error (RMSE) of 0.129. The accurate model based on this large data set could be useful to predict adsorption property of new compounds since such model covers a highly diverse structural space.  相似文献   

9.
National and international chemical management programs are assessing thousands of chemicals for their persistence, bioaccumulative and environmental toxic properties; however, data for evaluating the bioaccumulation potential for fish are limited. Computer based models that account for the uptake and elimination processes that contribute to bioaccumulation may help to meet the need for reliable estimates. One critical elimination process of chemicals is metabolic transformation. It has been suggested that in vitro metabolic transformation tests using fish liver hepatocytes or S9 fractions can provide rapid and cost-effective measurements of fish metabolic potential, which could be used to refine bioconcentration factor (BCF) computer model estimates. Therefore, recent activity has focused on developing in vitro methods to measure metabolic transformation in cellular and subcellular fish liver fractions. A method to extrapolate in vitro test data to the whole body metabolic transformation rates is presented that could be used to refine BCF computer model estimates. This extrapolation approach is based on concepts used to determine the fate and distribution of drugs within the human body which have successfully supported the development of new pharmaceuticals for years. In addition, this approach has already been applied in physiologically-based toxicokinetic models for fish. The validity of the in vitro to in vivo extrapolation is illustrated using the rate of loss of parent chemical measured in two independent in vitro test systems: (1) subcellular enzymatic test using the trout liver S9 fraction, and (2) primary hepatocytes isolated from the common carp. The test chemicals evaluated have high quality in vivo BCF values and a range of logK(ow) from 3.5 to 6.7. The results show very good agreement between the measured BCF and estimated BCF values when the extrapolated whole body metabolism rates are included, thus suggesting that in vitro biotransformation data could effectively be used to reduce in vivo BCF testing and refine BCF model estimates. However, additional fish physiological data for parameterization and validation for a wider range of chemicals are needed.  相似文献   

10.
Multimedia mass balance models assume well-mixed homogeneous compartments. Particularly for soils, this does not correspond to reality, which results in potentially large uncertainties in estimates of transport fluxes from soils. A theoretically expected exponential decrease model of chemical concentrations with depth has been proposed, but hardly tested against empirical data. In this paper, we explored the correspondence between theoretically predicted soil concentration profiles and 84 field measured profiles. In most cases, chemical concentrations in soils appear to decline exponentially with depth, and values for the chemical specific soil penetration depth (d(p)) are predicted within one order of magnitude. Over all, the reliability of multimedia models will improve when they account for depth-dependent soil concentrations, so we recommend to take into account the described theoretical exponential decrease model of chemical concentrations with depth in chemical fate studies. In this model the d(p)-values should estimated be either based on local conditions or on a fixed d(p)-value, which we recommend to be 10cm for chemicals with a log K(ow)>3.  相似文献   

11.
A new predictive toxicokinetics model was developed to estimate subacute toxicity (target organs, severity, etc.) of non-congeneric industrial chemicals, where the chemical structures and physico-chemical properties are only available. Thus, a physiological pharmacokinetics model, which consists of blood, liver, kidney (these were experimentally found as major toxicological targets), muscle and fat compartments , was established to simulate the chemical concentrations in organs/tissues with pharmacokinetic parameters by means of Runge-Kutta-Gill algorithm. The pliarmacokinetic parameters, i.e. absorption rate, absorption ratio, hepatic extraction ratio of metabolism and renal clearance were calculated by using separately established Quantitative Structure-Pharmacokinetics Relationship equations. The developed predictive model was then applied to simulations of 43 non-congeneric industrial chemicals. The chemical concentrations in organs/tissues after single oral administration were simulated, and their maximum concentrations (Cmax's) and area tinder the concentration-time curves (AUC's) were calculated.Fast Inverse Laplace Transform was newly applied for the purpose of simulation of 28-day repeated dose toxicity.Simulated concentrations of 28 days repeated dose were, however, found to be the same as those of simple repetitions of a single administration per day because of the short half-lives of non-congeneric industrial chemicals.A comparison of subacute toxicity data with Cmax's and AUC's in a single dose scenario suggested that the organs/tissues with relatively high concentrations of tested chemical substances were the most sensitive targets within a chemical.Chemical concentrations in liver, for instance, were correlated with the severity of hepatotoxicity among the chemicals. It was also suggested that to improve and widen the present approach, data of metabolite and reactivity of non-congeneric industrial chemicals to organs/tissues, receptors, etc. should be incorporated into the model.  相似文献   

12.
Chloroorganic chemicals emitted from the pulp and paper mill at nekoski in central Finland were monitored for several years. Concentration time series are used for evaluating the environmental fate and the applicability and validity of an exposure models. Fitted elimination rates of 3,4,5-Tri-, 4,5,6-Tri-, Tetrachloroguaiacol and 2,4,6-Trichlorophenol are approx. 0.22 d-1, or rather the half-lives are approx. 3 days. The elimination is most likely by biodegradation and transport-controlled. For 2,3,6-trichloro-p-cymene, fate simulations indicate significant volatilization and sedimentation. Good agreement is achieved with a one-dimensional steady-state box model, except for concentrations in fish. For a reliable assessment of environmental damage, laboratory experiments, monitoring and simulations need to be in tune.  相似文献   

13.
Physical and chemical properties which control the environmental distribution of five PCB replacement chemicals (di-isopropylnaphthalenes, phenylxylylethanes, butylated monochlorodiphenyl ethers, isopropylbiphenyls and tetrachloroethylene) have been obtained. These data are used to predict the distribution of these chemicals, a pentachlorobiphenyl and p,p′-DDE in an evaluative environment using a fugacity approach. This simple model gives no information about reactivity or persistence. More complex fugacity models are used to compare these additional features of a di-isopropylnaphthalene PCB replacement with those of a PCB.  相似文献   

14.
Otton SV  Sura S  Blair J  Ikonomou MG  Gobas FA 《Chemosphere》2008,71(11):2011-2016
Mono-alkyl phthalate esters (MPEs) are primary metabolites of di-alkyl phthalate esters (DPEs), a family of industrial chemicals widely used in the production of soft polyvinyl chloride and a large range of other products. To better understand the long term fate of DPEs in the environment, we measured the biodegradation kinetics of eight MPEs (-ethyl, -n-butyl, -benzyl, -i-hexyl, -2-ethyl-hexyl, -n-octyl, -i-nonyl, and -i-decyl monoesters) in marine and freshwater sediments collected from three locations in the Greater Vancouver area. After a lag period in which no apparent biodegradation occurred, all MPEs tested showed degradation rates in both marine and freshwater sediments at 22 °C with half-lives ranging between 16 and 39 h. Half-lives increased approximately 8-fold in incubations performed at 5 °C. Biodegradation rates did not differ between marine and freshwater sediments. Half-lives did not show a relationship with increasing alkyl chain length. We conclude that MPEs can be quickly degraded in natural sediments and that the similarity in MPE degradation kinetics among sediment types suggests a wide occurrence of nonspecific esterases in microorganisms from various locations, as has been reported previously.  相似文献   

15.
Monitoring and laboratory data play integral roles alongside fate and exposure models in comprehensive risk assessments. The principle in the European Union Technical Guidance Documents for risk assessment is that measured data may take precedence over model results but only after they are judged to be of adequate reliability and to be representative of the particular environmental compartments to which they are applied. In practice, laboratory and field data are used to provide parameters for the models, while monitoring data are used to validate the models' predictions. Thus, comprehensive risk assessments require the integration of laboratory and monitoring data with the model predictions. However, this interplay is often overlooked. Discrepancies between the results of models and monitoring should be investigated in terms of the representativeness of both. Certainly, in the context of the EU risk assessment of existing chemicals, the specific requirements for monitoring data have not been adequately addressed. The resources required for environmental monitoring, both in terms of manpower and equipment, can be very significant. The design of monitoring programmes to optimise the use of resources and the use of models as a cost-effective alternative are increasing in importance. Generic considerations and criteria for the design of new monitoring programmes to generate representative quality data for the aquatic compartment are outlined and the criteria for the use of existing data are discussed. In particular, there is a need to improve the accessibility to data sets, to standardise the data sets, to promote communication and harmonisation of programmes and to incorporate the flexibility to change monitoring protocols to amend the chemicals under investigation in line with changing needs and priorities.  相似文献   

16.
Plant uptake and transport models for neutral and ionic chemicals   总被引:1,自引:0,他引:1  
BACKGROUND: Models for predicting uptake and transport of chemicals in plants are applied in pesticide design, risk assessment, and environmental biotechnology. OBJECTIVE: This review considers the theoretical basics of the most popular models, and discusses what they have in common. The line is drawn between models for neutral compounds, and models for weak and strong electrolytes. MAIN FEATURES: Neutral Compounds. Neutral compounds undergo only very few processes inside plants (lipophilic interactions, metabolism), in contrast to weak electrolytes. The models developed for neutral compounds are widely applied in the risk assessment of environmental contaminants, but are not of much use for weak electrolytes, such as pesticides. Weak electrolytes. A very important process for weak electrolytes is the 'ion trap', which traps chemicals that dissociate inside plant cells. This is considered in the popular models of Kleier, Satchivi and Briggs. Other relevant processes for electrolytes are electrophilic interactions, speciation and complex formation. None of the currently used models considers these processes. CONCLUSIONS: The accuracy of models for neutral compounds is satisfactory, but the prediction of electrolyte behavior inside plants is still quite difficult due to gaps in knowledge.  相似文献   

17.
Barry G. Oliver 《Chemosphere》1985,14(8):1087-1106
The desorption of 20 chlorinated organics from sediments has been studied using a nitrogen purge/Tenax trap system for separating the “dissolved” and “sorbed” fractions in sediment/water slurries. The desorption partition coefficient, KD, was found to decrease with increasing temperature and suspended sediment concentration. While some differences in KD and desorption rates were observed for the study chemicals, considering their wide range of physical/chemical properties such as KOW, these changes were small. Desorption half-lives averaged about 60d at 4°C, 40d at 20°C and 10d at 40°C under continuous gaseous purging. Estimates of the loadings of chemicals via desorption from bottom sediments in Lake Ontario are compared to loadings of these chemicals to the lake from the Niagara River.  相似文献   

18.
Pesticide leaching models are being used to assist in the regulation and management of pesticides by indicating their potential for leaching to groundwater. Uncertainty in model input data is not, regrettably, included in most pesticide leaching assessments. In the work described here, we use logarithmic transformations of the attenuation factor (AF), a simple process-based index model, to represent uncertainty in a pesticide leaching assessment. Characterization of a wide range of pesticides as `leachers' or `non-leachers' for a specific Hawaii hydrogeological setting is facilitated by comparing the log-transformed AF, designated AFR, for each chemical with two reference chemicals for which leaching behavior in Hawaii is known. Defining a mean and uncertainty interval for the AFR index of each chemical being ranked provides a practical method of incorporating data uncertainty into a regulatory protocol.  相似文献   

19.
The purpose of this study was to evaluate alternative prediction models for the SO2 concentrations produced in the vicinity of the Ohio Edison Company Sammis Power Plant. The plant is situated in the northeastern portion of the Ohio River Valley in complex terrain. Comparisons of the 16 highest predicted and measured short-term SO2 concentrations were conducted for a one year period for 58 alternative models. Several models were found to predict reasonably accurately the 16 highest measured 24-hour SO2 concentrations. Each of these models requires an upward adjustment in the plume centerline location as the plume is transported downwind in rising terrain. These same models overpredict by substantial margins the 16 highest measured 3-hour SO2 concentrations. Improvements in emissions inventory data and improvements in the prediction models used are believed necessary to increase prediction accuracy further.  相似文献   

20.
A modeling tool that can resolve contributions from individual sources to the urban environment is critical for air-toxics exposure assessments. Air toxics are often chemically reactive and may have background concentrations originated from distant sources. Grid models are the best-suited tools to handle the regional features of these chemicals. However, these models are not designed to resolve pollutant concentrations on local scales. Moreover, for many species of interest, having reaction time scales that are longer than the travel time across an urban area, chemical reactions can be ignored in describing local dispersion from strong individual sources making Lagrangian and plume-dispersion models practical. In this study, we test the feasibility of developing an urban hybrid simulation system. In this combination, the Community Multi-scale Air Quality model (CMAQ) provides the regional background concentrations and urban-scale photochemistry, and local models such as Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) and AMS/EPA Regulatory Model (AERMOD) provide the more spatially resolved concentrations due to local emission sources. In the initial application, the HYSPLIT, AERMOD, and CMAQ models are used in combination to calculate high-resolution benzene concentrations in the Houston area. The study period is from 18 August to 4 September of 2000. The Mesoscale Model 5 (MM5) is used to create meteorological fields with a horizontal resolution of 1×1 km2. In another variation to this approach, multiple HYSPLIT simulations are used to create a concentration ensemble to estimate the contribution to the concentration variability from point sources. HYSPLIT simulations are used to model two sources of concentration variability; one due to variability created by different particle trajectory pathways in the turbulent atmosphere and the other due to different flow regimes that might be introduced when using gridded data to represent meteorological data fields. The ensemble mean concentrations determined by HYSPLIT plus the concentrations estimated by AERMOD are added to the CMAQ calculated background to estimate the total mean benzene concentration. These estimated hourly mean concentrations are also compared with available field measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号