首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric deposition of acidic cloud water is thought to be one of the causes for the recent forest decline in industrialized areas of the world. The present paper presents results from the Mountain Acid Deposition Program (MADPro), a part of EPA's Clean Air Status and Trends Network, (CASTnet). We used automated cloud water collectors at three selected mountain sites (Whiteface Mt., NY; Whitetop Mt., VA; and Clingman's Dome, TN) to take hourly samples from non-precipitating clouds during temperate (non- freezing) seasons of each year from 1994 to 1997. Samples were promptly analyzed for pH, conductivity, and concentration of dissolved ions. Cloud liquid water content (LWC) and meteorological parameters were measured at each site. Mean cloud frequencies and LWC of clouds were higher at Whiteface Mt., NY, than in the Southern Appalachians. The four most prevalent ions found in cloud water samples were usually, in order of decreasing concentration: sulfate (SO2−4) hydrogen (H+), ammonium (NH4+), and nitrate (NO3). Within cloud events the concentration of these major ions tended to co-vary. Typically there was an inverse relationship between LWC of the cloud and ionic concentration of the cloud water. During the sampling season, the highest ionic concentrations were seen during mid-summer. Ionic concentrations of samples from the southern sites were significantly higher than samples from Whiteface Mt., but further analysis indicates that this is at least partially due to the north–south difference in the LWC of clouds. MADPro results are shown to be comparable with previous studies of cloud chemistry in North America.  相似文献   

2.
Hourly averaged data for ozone collected in 1986 and 1987 were analyzed and characterized for a select set of high-elevation sites in the eastern United States. Pressure-corrected adjustments may be necessary when comparing ozone concentrations measured at two different elevations. When unadjusted concentrations (i.e. in units of parts per million) were used, the Whiteface Mountain sites showed what appeared to be an ozone elevational gradient. A gradient was not observed for the two MCCP Shenandoah National Park sites (SH1 and SH2). When adjusted ozone values (i.e. in units of micrograms per cubic meter) were used, the elevational gradient reported for Whiteface Mountain was no longer observed. When unadjusted concentrations were used, in most cases the high-elevation sites appeared to be receiving greater ozone exposure than the nearby, lower elevation sites. When adjusted ozone values were used, a consistent conclusion was not evident. On a regional basis for the period May through September 1987, when unadjusted concentrations were used, the high-elevation sites in the South appeared to experience higher cumulative ozone exposures than sites in the North. When adjusted ozone values were used, the geographic gradient was not strong. Assuming that target sensitivity remains nearly constant as elevation changes, adjusted concentrations should be taken into consideration when evaluating the relationship between ozone exposures at high-elevation sites and biological effects.  相似文献   

3.
In this paper we report measurements of SO2-4 fluxes in throughfall and bulk deposition across an elevational transect from 800 to 1275 m on Slide Mountain in the Catskill Mountains of southeastern New York State. The net throughfall flux of SO2-4 (throughfall-bulk deposition), which we attribute to cloud and dry deposition, increased by roughly a factor of 13 across this elevational range. Part of the observed increase results from the year-round exposure of evergreen foliage at the high-elevation sites, compared to the lack of foliage in the dormant season in the deciduous canopies at low elevations. Comparison of the net throughfall flux with estimates of cloud deposition suggests that both cloud deposition and dry deposition increased with elevation. Dry deposition estimates from a nearby monitoring site fall within the measured range of net throughfall flux for SO2-4. The between-site variation in net throughfall flux was very high at the high-elevation sites, and less so at the lower sites, suggesting that studies of atmospheric deposition at high-elevations will be complicated by extreme spatial variability in deposition rates. Studies of atmospheric deposition in mountainous areas of the eastern U.S. have often emphasized cloud water deposition, but these results suggest that elevational increases in dry deposition may also be important.  相似文献   

4.
Federal and state programs over the past two decades have resulted in the reduction of emissions of precursors of acid rain. Concomitant with these changes, measured concentrations of acidity in precipitation and in watersheds have shown a downward trend or improvement. However, another pathway for these precursors is through cloud and fog events that often tend to occur at high-elevation regions affecting the fauna and flora as well. In this study we report on long-term measurements of cloud water and precipitation chemistry made from 1994 onwards at a high-elevation location, Whiteface Mountain NY, in the northeastern United States. Trends and inter-relationship between the ions were examined along with ambient SO2 measurements and Adirondack lakes chemistry data.  相似文献   

5.
The objective of the National Dry Deposition Network is to determine patterns and trends of dry deposition for various sulfur and nitrogen species at roughly 50 locations throughout the continental USA. Each site is equipped for collection of continuous meteorological and ozone data and weekly average concentrations of SO4(2-), NO3-, SO2 and HNO3, using a three-stage filter pack. Results from 40 eastern US sites operational throughout 1989 show species-dependent variability from site to site, season to season, and day to night. Annual average concentrations of atmospheric SO4(2-), NO3-, SO2 and HNO3 ranged from 2.7 to 7.9, 0.2 to 3.9, 2.4 to 23.2 and 0.7 to 3.6 microg/m(-3), respectively. Seasonal variability was considerable for all constituents. Day/night data indicate that SO2 and HNO3, but not SO4(2-) and NO3-, are typically found at moderately to substantially lower concentrations at night, especially during spring and summer. Estimated dry deposition for SO2 and HNO3 appear to be much greater than for SO4(2-) and NO3-, respectively. Comparison of measured wet deposition and estimated dry deposition at numerous sites suggests that the two are similar in magnitude over much of the eastern USA.  相似文献   

6.
Ambient O3 exposures have reduced growth rates of tree genotypes in some areas of the United States. For characterizing O3 exposures in forested areas, data from primarily population-oriented sites have been used. It has been speculated that exposures calculated from population-oriented sites provide estimates greater than those that would actually be experienced in the majority of forested areas. Accordingly, we compared 1988 O3 data from three remote forested sites with data from several population-oriented monitoring sites in and around the mid? and southern Appalachian Mountains. The number of hours ≥0.08 ppm was lower at the remote forested sites than at the nearby population-oriented locations. In addition, we characterized the temporal variability of O3 exposures in forested regions of the United States and Canada for the period 1978-1988. We found that the years of highest O3 exposure in the eastern United States during 1978-1988 were 1978, 1980, 1983, and 1988, with 1988 being the worst year in four of seven eastern forest regions. In 1988, the Whiteface Mountain summit site (1483 m) experienced approximately 10 percent more hourly average concentrations ≥0.08 ppm than in the second highest O3 exposure year (i.e., 1979). Consistently throughout the 11-year period, the highest O3 exposures at the Whiteface Mountain site occurred during the late evening and early morning hours, with the result that the longterm 7-h (0900-1559h) exposure index could not distinguish those years in which the highest exposures occurred from those in which the lowest occurred. Similar to the Whiteface Mountain site, two high-elevation Shenandoah National Park sites experienced their highest O3 exposures in 1988. With the exception of 1986, the lower elevation site (Dickey Ridge) consistently experienced more frequent occurrences of hourly average concentrations ≥0.08 ppm than the higher elevation site (Big Meadows).  相似文献   

7.
Ambient ozone, sulfur dioxide, and nitrogen dioxide data collected at 11 rural gaseous air pollution monitoring stations located throughout the Federal Republic of Germany (FRG) were characterized to provide a basis for investigating the effect these air pollutants may have on forest decline. For any given year, with the exception of the Waldhof site, the ozone monitoring sites did not experience more than 50 occurrences of hourly mean concentrations equal to or above 0.10 ppm. In most cases, the number of occurrences equal to or above 0.10 ppm at the FRG ozone monitoring sites was below the number experienced at a rural forested site located at Whiteface Mountain, New York. Several of the FRG monitoring sites experienced a large number of occurrences of hourly mean ozone concentrations between 0.08 and 0.10 ppm. Hof, Selb, Arzberg, and Waldhof experienced several occurrences of elevated levels of sulfur dioxide concentrations. The nitrogen dioxide 24-h mean concentrations were low for all sites. Because the 24-h mean data may mask the occurrence of a few high concentration events, it is not known if any of the sites that monitored nitrogen dioxide experienced short-term elevated concentrations. To gain further insight into the possible effect of pollutant mixtures on vegetation, future efforts should involve characterizing the timing of multi-pollutant exposures.  相似文献   

8.
This preliminary study investigated the effects of enhanced nitrogen (NH4NO3 at 48 kg ha(-1) y(-1)), sulphur (Na2SO4 at 50 kg ha(-1) y(-1)), acidified nitrogen and sulphur (H2SO4 + NH4NO3) at pre-stated doses (pH 2.5), and acidified nitrogen and sulphur deposition at double these doses on the ectomycorrhizal community associated with a 13-year-old Sitka spruce (Picea sitchensis) forest. Sulphur deposition had little impact on below ground ectomycorrhizal diversity, but stimulated sporocarp production. Nitrogen inputs increased below ground colonisation compared to acidified nitrogen and sulphur, largely due to an increase in Tylospora fibrillosa colonisation. Sporocarp production and ectomycorrhizal root colonisation by Lactarius rufus were reduced in the nitrogen treated plots. These observations suggest that nitrogen deposition to a young plantation may suppress ectomycorrhizal fungi producing large sporocarps. It is proposed that enhanced nitrogen deposition increases ectomycorrhizal nitrogen assimilation, consuming more carbon and leaving less for extrametrical mycelium and sporocarp development.  相似文献   

9.
Several collocated semicontinuous instruments measuring particulate matter with particle sizes < or =2.5 microm (PM2.5) sulfate (SO4(2-)) and nitrate (NO3-) were intercompared during two intensive field campaigns as part of the PM2.5 Technology Assessment and Characterization Study. The summer 2001 urban campaign in Queens, NY, and the summer 2002 rural campaign in upstate New York (Whiteface Mountain) hosted an operation of an Aerosol Mass Spectrometer, Ambient Particulate Sulfate and Nitrate Monitors, a Continuous Ambient Sulfate Monitor, and a Particle-Into-Liquid Sampler with Ion Chromatographs (PILS-IC). These instruments provided near real-time particulate SO4(2-) and NO3- mass concentration data, allowing the study of particulate SO4(2-)/NO3- diurnal patterns and detection of short-term events. Typical particulate SO4(2-) concentrations were comparable at both sites (ranging from 0 to 20 microg/m3), while ambient urban particulate NO3- concentrations ranged from 0 to 11 microg/m3 and rural NO3- concentration was typically less than 1 microg/m3. Results of the intercomparisons of the semicontinuous measurements are presented, as are results of the comparisons between the semicontinuous and time-integrated filter-based measurements. The comparisons at both sites, in most cases, indicated similar performance characteristics. In addition, charge balance calculations, based on major soluble ionic components of atmospheric aerosol from the PILS-IC and the filter measurements, indicated slightly acidic aerosol at both locations.  相似文献   

10.
Bulk deposition composition and pine branch washing were measured from April 1999 to March 2000 on the east coast of Spain. The main objective was to characterise N deposition patterns with special emphasis on dry deposition. Bulk deposition in the region is dominated by neutralisation processes by Ca2+ and HCO3-, ClNa of marine origin and a high correlation between NO3- and SO4(2-). SO4(2-) concentrations show a decrease with respect to previous studies in the region in agreement with generalized sulfur emission decreases while the remaining ions, including NO3-, are higher due to their general increase as well as to the inclusion of dry deposition in bulk collectors in the present study. An enrichment in NO3- has been observed in dry deposition composition branch washing) with respect to bulk deposition, while an impoverishment has been observed in the case of NH4+. Annual bulk deposition varies between 7.22-3.1 and 3.5-1.8 Kg ha(-1) year(-1) for S- SO4(2-) and N- NO3-, respectively. N total deposition goes from 9.78 to 6.8 Kg ha(-1) year(-1) at most stations, with the lowest deposition at the control station and Alcoi. The relative dry deposition with respect to the total was over 40% at most stations, going up to 75% at the southern station. N-deposition is expected to be higher considering that N-NH4+ deposition has been underestimated in this study.  相似文献   

11.
In the vicinity of a large ammonia emission area, dry and wet deposition of acidifying and eutrophying compounds onto Douglas Fir forests was studied by sampling throughfall, stemflow and bulk precipitation. Deposition amounts of NH(4)(+) and SO(4)(2-) were recognised to be among the highest of Central Europe, resulting in extremely high inputs of (potential) acid to the forest soils (13.1 kEq ha(-1) year(-1)). The contribution of NH(3) emissions from agriculture to the total acid deposition to the forests was 52%. The total nitrogen deposition amounted to 115.0 kg ha(-1) year(-1), 83% originating from NH(3) emissions and 17% from NO(x) emissions. Calculated mean dry deposition velocities of NH(3) and SO(2) were much larger than reported in the literature. A synergistic effect between NH(3) and SO(2) in the process of dry deposition is suggested and evidence for this effect is discussed. When deposition models do not take this interaction into account, they will underestimate NH(3) and SO(2) deposition amounts in areas with intensive animal husbandry.  相似文献   

12.
Throughfall was collected in a Scots pine forest exposed to about 14 microg m(-3) of both SO2 and NO2, and in a control forest with 1 microg m(-3) SO2 and < 1 microg m(-3) NO2. Precipitation was collected in a nearby open field. Collection was performed on an event basis during the whole vegetation period. Exposure was made by an open-air release system during the vegetation period, except during rain and at night. Additional sulfate deposition in the exposed forest (compared to control forest) was nearly equal to dry deposition of sulfur dioxide, as estimated with a stomatal conductance model adapted for the particular forest. It is thus concluded that essentially all of the dry deposited sulfur dioxide is eventually extracted and appears in throughfall-including the fraction that has been deposited through stomata. Attempts to relate net throughfall deposition to dry deposition of sulfate in the control forest were inconclusive, since a minor (10%) uncertainty in the water balance had a major influence on calculated deposition velocity for particulate sulfate. Nitrate throughfall deposition is about half of the open field wet deposition, both for the exposed and control forest. Thus, a long-term exposure with about 14 microg m(-3) NO2 decreased nitrate throughfall deposition.  相似文献   

13.
Fowler D  Muller J  Smith RI  Cape JN  Erisman JW 《Ambio》2005,34(1):41-46
The relationship between emissions and deposition of air pollutants, both spatially and in time forms an important focus for science and for policy makers. In practice, this relationship may become nonlinear if the underlying processes change with time, or in space. Nonlinearities may also appear due to errors in emission or deposition data, and careful scrutiny of both data sources and their relationship provides a means of picking up such deficiencies. Nonlinearities in source receptor relationships for sulfur and nitrogen compounds in Europe have been identified in measurement data for the UK. In the case of sulfur, the dry deposition process has been shown to be strongly influenced by ambient concentrations of NH3, leading to substantial increases in deposition rate as SO2 concentrations decline and the ratio SO2/NH3 decreases. The field evidence extends to measurements over three different surfaces in three countries across Europe. A mechanistic understanding of the cause of this nonlinearity has been provided. Apparent nonlinearities also exist in the sulfur deposition field through the influence of shipping emissions. The effect is clear at west coast locations, where during a period in which land-based sulfur emissions declined by 50%, no significant decline in concentrations of SO(2-) in precipitation were observed. The sites affected are primarily the coastal regions of southwestern UK, where shipping sources contribute a substantial fraction of the deposited sulfur, but the effect is not detectable elsewhere. Full quantification of the spatially disaggregated emission and their changes in time will eliminate this apparent nonlinearity in the source-receptor data. For oxidized nitrogen emission and deposition in the UK, there is strong evidence of nonlinearity in the source-receptor relationship. The concentrations and deposition of NO(3-) in precipitation have declined little following a reduction in emissions of 45% during the period 1987 to 2001. The data imply a significant decrease in the average transport distance for oxidized nitrogen and most probably an increase in the average oxidation rate. However, the net effect of changes in aerosol chemistry due to changes in sulfur emissions and less competition for the main oxidants as a consequence of reductions in sulfur emission have not been separated. A quantitative explanation of the cause of this nonlinearity is lacking and the effects are therefore identified as an important uncertainty for the development of further protocols to control acidification, eutrophication and photochemical oxidants in Europe.  相似文献   

14.
The results of two field studies and an open-top chamber fumigation experiment showed that the response of mature Scots pine to SO(2) and NO(2) differed from that of mature Norway spruce. Moreover, the response of pine seedlings to SO(2) and NO(2) differed from that of mature trees. The greater increase in the needle total S concentrations of pine suggested more abundant stomatal uptake of SO(2) compared to spruce. Both pine seedlings and mature trees also seemed to absorb more N from atmospheric deposition. Mature pine was able to assimilate SO(4)(2-) derived from SO(2) into organic S more effectively than mature spruce at the high S and N deposition sites, whereas both pine and spruce seedlings accumulated SO(4)-S under NO(2)+SO(2) exposure. Spruce, in turn, accumulated SO(4)-S even when well supplied with N. Net assimilation of SO(4)(2-) in conifer seedlings was enhanced markedly by elevated temperature. To protect the northern coniferous forests against the harmful effects of S and N deposition, it is recommended that the critical level for SO(2) as a growing season mean be set at 5-10 microg m(-3) and NO(2) at 10-15 microg m(-3), depending on the 'effective temperature sum' and/or whether SO(2) and NO(2) occur alone or in combination.  相似文献   

15.
The objectives of this study were: (1) to quantify the errors associated with saturation air quality monitoring in estimating the long-term (i.e., annual and 5 yr) mean at a given site from four 2-week measurements, once per season; and (2) to develop a sampling strategy to guide the deployment of mobile air quality facilities for characterizing intraurban gradients of air pollutants, that is, to determine how often a given location should be visited to obtain relatively accurate estimates of the mean air pollutant concentrations. Computer simulations were conducted by randomly sampling ambient monitoring data collected in six Canadian cities at a variety of settings (e.g., population-based sites, near-roadway sites). The 5-yr (1998-2002) dataset consisted of hourly measurements of nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), and CO. The strategy of randomly selecting one 2-week measurement per season to determine the annual or long-term average concentration yields estimates within 30% of the true value 95% of the time for NO2, PM10 and NOx. Larger errors, up to 50%, are expected for NO, SO2, PM2.5, and CO. Combining concentrations from 85 random 1-hr visits per season provides annual and 5-yr average estimates within 30% of the true value with good confidence. Overall, the magnitude of error in the estimates was strongly correlated with the variability of the pollutant. A better estimation can be expected for pollutants known to be less temporally variable and/or over geographic areas where concentrations are less variable. By using multiple sites located in different settings, the relationships determined for estimation error versus number of measurement periods used to determine long-term average are expected to realistically portray the true distribution. Thus, the results should be a good indication of the potential errors one could expect in a variety of different cities, particularly in more northern latitudes.  相似文献   

16.
Concentrations of nitrogen gases (NH(3), NO(2), NO, HONO and HNO(3)) and particles (pNH(4) and pNO(3)) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO(2)) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH(3)). A combination of gradient method (NH(3) and NO(x)) and resistance modelling techniques (HNO(3), HONO, pNH(4) and pNO(3)) was used to calculate dry deposition of nitrogen compounds. Net flux of NH(3) amounted to -64 ng N m(-2) s(-1) over the measuring period. Net fluxes of NO(x) were upward (8.5 ng N m(-2) s(-1)) with highest emission in the morning. Fluxes of other gases or aerosols substantially contributed to dry deposition. Total nitrogen deposition was estimated at -48 kg N ha(-1) yr(-1) and consisted for almost 80% of NH(x). Comparison of throughfall nitrogen with total deposition suggested substantial uptake of reduced N (+/-15 kg N ha(-1) yr(-1)) within the canopy.  相似文献   

17.
Studies on the nitrogen (N) biogeochemistry in Adirondack northern hardwood ecosystems were summarized. Specific focus was placed on results at the Huntington Forest (HFS), Pancake-Hall Creek (PHC), Woods Lake (WL), Ampersand (AMO), Catlin Lake (CLO) and Hennessy Mountain (HM). Nitrogen deposition generally decreased from west to east in the Adirondacks, and there have been no marked temporal changes in N deposition from 1978 through 1998. Second-growth western sites (WL, PHC) had higher soil solution NO(3-) concentrations and fluxes than the HFS site in the central Adirondacks. Of the two old-growth sites (AMO and CLO), AMO had substantially higher NO(3-) concentrations due to the relative dominance of sugar maple that produced litter with high N mineralization and nitrification rates. The importance of vegetation in affecting N losses was also shown for N-fixing alders in wetlands. The Adirondack Manipulation and Modeling Project (AMMP) included separate experimental N additions of (NH4)2SO4 at WL, PHC and HFS and HNO3 at WL and HFS. Patterns of N loss varied with site and form of N addition and most of the N input was retained. For 16 lake/watersheds no consistent changes in NO(3-) concentrations were found from 1982 to 1997. Simulations suggested that marked NO(3-) loss will only be manifested over extended periods. Studies at the Arbutus Watershed provided information on the role of biogeochemical and hydrological factors in affecting the spatial and temporal patterns of NO(3-) concentrations. The heterogeneous topography in the Adirondacks has generated diverse landscape features and patterns of connectivity that are especially important in regulating the temporal and spatial patterns of NO(3-) concentrations in surface waters.  相似文献   

18.
Atmospheric deposition of fixed nitrogen as nitrate and ammonium in rain and by dry deposition of nitrogen dioxide, nitric acid and ammonia has increased throughout Europe during the last two decades, from 2-6 kg N ha(-1) year(-1) to 15-60 kg N ha(-1) year(-1). The nitrogen contents of bryophytes and the ericaceous shrub Calluna vulgaris have been measured at a range of sites, with the objective of showing the degree to which nitrogen deposition is reflected in foliar plant nitrogen. Tissue nitrogen concentrations of herbarium bryophyte samples and current samples of the same species collected from the same sites were compared. No significant change in tissue nitrogen was recorded at a remote site in north-west Scotland where nitrogen inputs are small (< 6 kg N ha(-1) year(-1)). Significant increases in tissue N occurred at four sites ranging from 38% in central Scotland to 63% in Cumbria where nitrogen inputs range from 15 to 30 kg N ha(-1) year(-1). The relationships found between the estimated input of atmospheric nitrogen and the tissue nitrogen content of the selected bryophytes and Calluna at the sites investigated were found to be generally linear and fitted the form N(tissue) = 0.62 + 0.022 N(dep) for bryophytes and N(tissue) = 0.83 + 0.045 N(dep) for Calluna. There was thus an increase in total tissue nitrogen of 0.02 mg g(-1) dry weight for bryophytes and 0.045 mg g(-1) dry weight for Calluna for an increase in atmospheric nitrogen deposition of 1 kg ha(-1) year(-1). The lowest concentrations were found in north-west Scotland and the highest in Cumbria and the Breckland heaths of East Anglia, both areas of high atmospheric nitrogen deposition (30-40 kg N ha(-1) year(-1)). The implications of increased tissue nitrogen content in terms of vegetation change are discussed. Changes in atmospheric nitrogen deposition with time were also examined using measured values and values inferred from tissue nitrogen content of mosses. The rate of increase in nitrogen deposition is not linear over the 90-year period, and the increases were negligible over the period 1880-1915. However, during the period 1950 to 1990 the data suggest an increase in nitrogen deposition of 2 kg N ha(-1) every 10 years.  相似文献   

19.
Atmospheric concentrations and deposition of the major nitrogenous (N) compounds and their biological effects in California forests are reviewed. Climatic characteristics of California are summarized in light of their effects on pollutant accumulation and transport. Over large areas of the state dry deposition is of greater magnitude than wet deposition due to the arid climate. However, fog deposition can also be significant in areas where seasonal fogs and N pollution sources coincide. The dominance of dry deposition is magnified in airsheds with frequent temperature inversions such as occur in the Los Angeles Air Basin. Most of the deposition in such areas occurs in summer as a result of surface deposition of nitric acid vapor (HNO3) as well as particulate nitrate (NO3-) and ammonium (NH4+). Internal uptake of gaseous N pollutants such as nitrogen dioxide (NO2), nitric oxide (NO), HNO3, peroxyacetyl nitrate (PAN), ammonia (NH3), and others provides additional N to forests. However, summer drought and subsequent lower stomatal conductance of plants tend to limit plant utilization of gaseous N. Nitrogen deposition is much greater than S deposition in California. In locations close to photochemical smog source areas, concentrations of oxidized forms of N (NO2, HNO3, PAN) dominate, while in areas near agricultural activities the importance of reduced N forms (NH3, NH4+) significantly increases. Little data from California forests are available for most of the gaseous N pollutants. Total inorganic N deposition in the most highly-exposed forests in the Los Angeles Air Basin may be as high as 25-45 kg ha(-1) year(-1). Nitrogen deposition in these highly-exposed areas has led to N saturation of chaparral and mixed conifer stands. In N saturated forests high concentrations of NO3- are found in streamwater, soil solution, and in foliage. Nitric oxide emissions from soil and foliar N:P ratios are also high in N saturated sites. Further research is needed to determine the ecological effects of chronic N deposition, and to develop appropriate management options for protecting water quality and managing plant nutrient resources in ecosystems which no longer retain excess N.  相似文献   

20.
Saskatoon serviceberry or Saskatoon (Amelanchier alnifolia Nutt. cv. Smoky) seedlings were planted at five study sites within a 35,000 km(2) airshed, that is influenced by a number of isolated stationary sources of sulfur dioxide (SO(2)), oxides of nitrogen and hydrocarbons, among others. The locations of the five sites were based on the results of a meteorological dry deposition model for the oxides of sulfur and nitrogen. Visible foliar injury responses of Saskatoon were used as a biological indicator of SO(2) exposures, through monthly field surveys. During late July 1998, unifacial, interveinal chlorosis was observed on some 12% of the seedlings at one study site. By September, the chlorosis had become more severe (necrosis) on some 70% of the plants at that site. Site specific ambient SO(2) levels were relatively low (maximum 5-min concentration of 52.8 ppb). Similar data were unavailable for all, but one other site. Therefore, foliar total S and SO(4)(2-)-S concentrations were analyzed in September at four of the five study sites. Previously soil SO(4)(2-)-S at these sites had been analyzed. There were spatial variabilities among these parameters. Based on the overall examination of these data, it is concluded that the observed visible injury symptoms were due to chronic SO(2) exposures, exacerbated by the presence of ozone (O(3)). Independent of this literature based speculation, visible foliar injury responses of Saskatoon can be used as a biological indicator for acute or chronic ambient SO(2) exposures, in the presence of other phytotoxic air pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号