首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Particle-size distributions and several biochemical components of seston were studied from October 1986 to December 1987 in surface waters of the Bay of Biscay. Variance partitioning of hydrographic and seston parameters indicates that, although seasonal variability related to the thermal cycle was important, most of the differences in seston concentration were caused by spatial components of variance. Changes in the vertical structure of the water column appeared to be the principal source of variability. Phytoplankton blooms in spring and fall and the effects of the coastal upwelling and the thermocline during summer were traced using seston concentration and biochemical composition. The different seston measurements were scaled according to their correlations with total concentration and particle size. Photosynthetic pigment biomass was related to both large and small partieles. However, concentrations of particulate proteins, lipids and carbohydrates were more related to small particles. Although not specifically analysed, low concentrations of inorganic particles and detritus can be expected in the study area, thus most of the particulate organic matter was associated with small, non-pigmented organisms, particularly in surface waters during the period of thermal stratification. The variability in concentrations of total seston and particulate organic matter was mainly due to variations in particulate proteins, lipids and carbohydrates; pigment concentrations were of secondary importance. Expressed as the ratio chlorophyll a: particulate protein-nitrogen, phytoplankton constituted an important fraction of the microplankton biomass only during spring blooms, when it averaged 75% of the particulate protein-nitrogen. In constrast, <30% of protein-nitrogen was related to chlorophyll a during the summer. These results suggest that an oligotrophic structure based on the microbial-loop prevails in microplankton assemblages of surface waters for most of the year.  相似文献   

2.
This paper describes a carbon budget for the spring phytoplankton bloom in Auke Bay, a subarctic bay in southeastern Alaska. The budget was constructed using semiweekly data on carbon production, particulate carbon in the water column, and cumulative sedimentation of carbon, chlorophyll a, and pheopigments. From these measured parameters, seasonal carbon consumption, utilization, and import/export terms were derived. The chlorophyll and pheopigment data were used to partition carbon sinking out of the photic zone between phytoplankton cells and fecal material. The difference between total carbon production and carbon available for consumption was attributed primarily to carbon import/export related to advection of water masses into and out of the bay. Separate budgets were developed for each of five sampling years (1985–1989). An average of 130±16 g C/m2 were produced by phytoplankton during each spring. Our model suggests that an average of 70% of this carbon was available for consumption by grazers within the bay; the remaining 30% is assumed to have been exported from the bay by advective transport. Of the available (non-exported) carbon, an average of 55% was consumed by grazers, 34% sank out of the photic zone in the form of uneaten algae, and about 11% remained at the end of the sampling period in the form of phytoplankton standing stocks. Overall, about 27% of the carbon produced each spring in Auke Bay (35 gC/m2) was used for growth and respiration by first-order consumers within the bay.  相似文献   

3.
Between 1980 and 1984, plankton was collected for metal analysis during four expeditions in the Baltic Sea. for comparison, samples from adjacent areas of the northeastern Atlantic Ocean were also taken. the mixed net-plankton samples were analyzed by AAS for metals (Al, Cd, Co, Cr, Cu. Fe, Mn, Ni, Pb, and Zn). the results are discussed with regard to spatial and temporal trends and for comparison with data from other authors. Correlations among the contents of the different metals and between the metal contents and 'external factors' including salinity, season, percentage of co-collected phytoplankton, and concentration of dissolved and particulate metals in the water are considered.

There is a tendency for higher metal contents in plankton from the brackish Baltic Sea (Al, Mn and Hg), while other metals (e.g. Cd) show higher levels in samples taken from the marine environment. Except for mercury, no clear correlations could be found between the metal content in plankton and the dissolved concentration of the same metal in the ambient water. Otherwise, the contents of aluminium, iron, manganese and zinc in the suspended particulate matter and in the plankton seem to be partly related to each other.  相似文献   

4.
Water samples were collected on a fortnightly basis in the lagoon of S. Gilla (Sardinia, Mediterranean Sea) in order to study seasonal nutritional fluctuations of particulate organic matter. the lagoon is characterized by high quantities of suspended matter throughout the year. Thermohaline conditions had no effect on particulate matter quantity and composition, but the quantity as well as quality of suspended particles was drastically affected by the wind, the major effecter of sediment resuspension. As a result of sediment resuspension, seston was always richer in inorganic fraction. However, throughout the year of investigation, most particulate organic carbon was quite appealing for filter feeding communities, although the best POM quality was available during phytoplankton blooming. the phytoplankton pool of suspended matter was just a small fraction of the bulk, accounting for only 13% on average of particulate organic carbon. in terms of energy available in the seston, the highest amount was stored in organic matter heterotrophic fraction, whilst the smallest was to be found in living phytoplankton.  相似文献   

5.
Mass encystment and sinking of dinoflagellates during a spring bloom   总被引:10,自引:0,他引:10  
The decline of a spring bloom dominated by dinoflagellates and the mass sedimentation of dinoflagellate cysts was documented in a coastal area of the northern Baltic Sea, SW Finland in 1983. The exceptionally large spring phytoplankton bloom was observed in early May. After depletion of nitrate phytoplankton biomass declined rapidly. The bloom was followed by intense sedimentation of spherical cysts and of organic matter at the end of May. These cysts were presumably hypnozygotes of Peridinium hangoei Schiller. Sedimentation of dinoflagellate cysts was estimated to correspond to ca. 45% of the maximum sedimentation of particulate organic carbon at this time, although most of the dinoflagellate biomass disintegrated already in the water column and was deposited as organic detritus or washed away by advection. It is concluded that the life cycle strategies of the dominant vernal phytoplankton species have a major impact on the sedimentation of the spring bloom.  相似文献   

6.
黄海春季表层叶绿素和初级生产力及其粒径结构研究   总被引:1,自引:0,他引:1  
张江涛  殷克东 《生态环境》2010,19(9):2107-2111
根据2006年4月对黄海浮游植物分级叶绿素及初级生产力的调查,研究了黄海叶绿素及初级生产力的水平分布及粒级结构特征,并分析了其主要影响因素。黄海海域调查站位表层叶绿素a质量浓度变化范围为0.20~4.94μg·L-1,平均值为0.96μg·L-1。叶绿素最大值出现在临近长江口的站位。叶绿素分级结果表明黄海春季以粒径〉5μm的浮游植物占优势。黄海表层初级生产力的变化范围为2.03~15.64mg·m-3·h-1,平均值为6.08mg·m-3·h-1。其中南黄海海域初级生产力平均为6.58mg·m-3·h-1,北黄海海域初级生产力平均为4.92mg·m-3·h-1。高值区分布在南黄海中部。受水体透明度的影响,低值区出现在临近长江口的站位。断面站位分析表明浮游植物初级生产力由北向南逐步升高,温度随纬度的变化是南北海域初级生产力水平差异的主要原因。由于粒径较小(〈5μm)的浮游植物单位叶绿素具有较高的碳固定能力,调查期间整个海区初级生产力以粒径〈5μm的浮游植物贡献为主。  相似文献   

7.
A comparative analysis of data, obtained during four indoor-mesocosm experiments with natural spring plankton communities from the Baltic Sea, was conducted to investigate whether biogeochemical cycling is affected by an increase in water temperature of up to 6?°C above present-day conditions. In all experiments, warming stimulated in particular heterotrophic bacterial processes and had an accelerating effect on the temporal development of phytoplankton blooms. This was also mirrored in the build-up and partitioning of organic matter between particulate and dissolved phases. Thus, warming increased both the magnitude and rate of dissolved organic carbon (DOC) build-up, whereas the accumulation of particulate organic carbon (POC) and phosphorus (POP) decreased with rising temperature. In concert, the observed temperature-mediated changes in biogeochemical components suggest strong shifts in the functioning of marine pelagic food webs and the ocean’s biological carbon pump, hence providing potential feedback mechanisms to Earth’s climate system.  相似文献   

8.
Measurements of primary production in the Baltic Sea over a period of 2 years (1969/1971) by the 14C method are reported. The rate of total annual production for the Baltic Sea proper and the Gulf of Finland including coastal areas appears to lie between 35 and 40 gC·m2, a rate which can be assumed as characteristic for oligotrophic waters with a low production rate. An apparent increase in productivity between the 2 years could be noted. Calculations for the water mass below the halocline show that between 0.7 and 0.8 ml/l oxygen is used up during a period of 3 months required for the development of anoxic conditions. The major portion of the organic matter in the Baltic Sea undergoes decomposition in the sub-photic zone above the halocline. The ratio of organic material in deep water to the total available oxidizable matter appears to remain constant with time; therefore, the apparent increase in productivity in the photic layer does not affect apprecibly the development of anoxic conditions in deep water. Of the different areas investigated, the Gulf of Finland seems to be the most productive. In the southern Baltic Sea, the rate of production over 5 years between 1966 and 1971 has not changed appreciably. In fact, it shows a trend toward a slight decrease, whereas, in other areas of the Baltic Sea, the rate of production indicates an apparent increase. Comparison with oceanic coastal areas of the west coast of Sweden shows that the rate of production there is higher than in the Baltic Sea. Of the micronutrients controlling productivity in the photic layer of the Baltic Sea, nitrate has a stronger limiting effect on plant growth than phosphate, a fact which is in agreement with existing conceptions on the subject. Dissolved iron does not seem to exert any appreciable influence on the productivity.  相似文献   

9.
Seasonal variations in bacterial populations (total number, biomass, biomass-spectrum, number of dividing cells) as well as in concentrations and decomposition rates of particulate organic material were followed in a sandy mud sediment of the Western Kiel Bight (Baltic Sea; FRG). The strong seasonal variations observed could be traced back to the effect of certain ecological situations and events in the sediment from which the input of the phytoplankton blooms in autumn and spring, respectively, the accumulation of organic material during winter, and the spring development of the benthic fauna turned out to be the most important. Bacterial carbon net production following the breakdown of the phytoplankton blooms ranged between 9 g (autumn) and 16 g (spring) per g of dry weight sediment per day. The consequences of shifts in the size composition of the bacterial populations as well as the importance of the measurement of enzymatic decomposition rates of particulate organic material in sediments are demonstrated and discussed in relation to the events mentioned above.Publication No. 420 of the Joint Research Program at Kiel University (Sonderforschungsbereich 95 der Deutschen Forschungsgemeinschaft)  相似文献   

10.
Changes in the phytoplankton population caused by a wind-induced mesoscale eddy, first located off the Hawaiian chain on 29 August 1989, were examined from 6 to 12 September 1989. These cyclonic eddies produce upwelling of nutrient-rich water into the photic zone which may induce changes in the distribution of phytoplankton. The eddy affected the depth, magnitude and composition of the chlorophyll maximum. The eddy produced an upward shift in the distribution of phytoplankton, shoaling the chlorophyll maximum to 30 m. Pigment concentrations at the chlorophyll maximum were enriched up to 2.2 times inside the eddy. Outside the eddy, the upper mixed layer (UML, 50 m) was dominated by cyanobacteria whereas the deep chlorophyll maximum (DCM) was dominated by prochlorophytes, chlorophytes and chrysophytes. Inside the eddy, the UML showed an increase in deep water taxa but little change in cyanobacteria. The observed population changes probably resulted from increased growth rates and vertical transport of cells. Based on projections of the track of the eddy, we inferred that its trail created an area of enhanced chlorophyll that was not quickly consumed, and concluded that coupling between phytoplankton and grazers was weak. The presence of such cyclonic eddies may explain some of the variability in chlorophyll concentration found in the oligotrophic subtropical Pacific.  相似文献   

11.
A comparison of biological and hydrographical factors was carried out in the surface waters of the Etang de Berre near Marseille. The following parameters were compared: primary production, chlorophyll a, seston, particulate carbon and albumin as biochemical indicators; temperature, salinity, oxygen, alcalinity and nutrients (phosphate, nitrate, nitrite and silicate) as physico-chemical parameters. Furthermore, quantitative and qualitative determinations of phytoplankton and zooplankton were made. During the investigations a negative correlation was found between the content of oxygen and the concentration of dissolved phosphorus. In the northern part of the area under investigation a vertical movement toward the surface exists, which can be explained by winds from the north (Mistral). The primary production and others biological factors are ten times more intensive than in the Mediterranean Sea. This fact may be due to eutrophication. In regard to the plankton, the diatoms —especially Nitzschia delicatissima CLEVE — are dominant. A relation between the percentage composition of phytoplankton and the copepod Acartia latisetosa was found.  相似文献   

12.
Observations of heterotrophic activity on photoassimilated organic matter   总被引:3,自引:0,他引:3  
The natural heterotrophic utilization of released and particulate photoassimilated compounds by natural phytoplankton populations was followed during the summer of 1975 in the Kiel Bight (Western Baltic Sea). Phytoplankton exudates (2 to 21% of primary production) seem to represent an important substrate for heterotrophic bacteria: uptake rates between 8 and 17,5%/h were observed. Samples incubated with antibiotics indicated that the heterotrophic uptake of phytoplankton exudates during photosynthesis could lead to underestimation of the release rate. Production of 14CO 2was used as an estimate of the mineralization of particulate photoassimilated matter. The mineralization rates measured were in the range of 6 to 20% after 20 h. In order to confirm the quantitative measurements, micro-autoradiographic examinations of the samples were performed.  相似文献   

13.
A study of hydrographical and biological parameters has been undertaken in surface waters near the mouth of the Rhône. Salinity, temperature and nutrient salts have been recorded, and the phytoplankton, as well as the zooplankton, quantitatively and qualitatively analyzed. Furthermore, the concentrations of chlorophyll a, seston, and organic matter have been determined. The hydrographical structure near the Rhône is heterogenous. The biological results are diffcult to explain on the basis of hydrographical parameters. The numerical data of zooplankton in the investigated area are 10 times higher than those of the Mediterranean Sea. There is a great abundance of brackish and freshwater phytoplankton in the dilution zone, but these cells are dead or almost dead; these observations coincide with the low concentrations of chlorophyll a.  相似文献   

14.
At two fixed stations in the Equatorial Atlantic Ocean (0°–4° W), the physical, chemical and biological properties of the euphotic layer were determined for 14 d (Station A: 5–18 February, 1979) and 13 d (Station B: 20 October–7 November, 1979), respectively. The stability of the water column allowed comparison of 3 different “systems”: (i) a well-illuminated and nitrate-depleted mixed layer; (ii) a chlorophyll maximum layer (chl a max) in the thermocline which is poorly illuminated (6.3% of surface irradiance); (iii) a well-illuminated but nitrate-rich (>0.9 μg-at l-1) mixed layer. In each layer the particulate organic carbon (COP), nitrogen (NOP) and phosphorus (POP) contents were measured and compared with the phytoplankton biomass. In the chlorophyll maximum layer, the phytoplankton biomass contributed significantly to the total particulate organic matter (between 55 and 75%). In the nitrate-depleted mixed layer, the results varied according to whether the regression technique [COP=f(chl a)] was used, or the chl a synthesis during the incubation of the samples. With the former technique, the phytoplankton carbon (C p) content appeared minimal, because the y intercept, computed using all the data of the water column, was probably overestimated for this layer. POP would be more associated with living protoplasm than with carbon and nitrogen in the three layers. In the chlorophyll a maximum layer it constitutes a valuable detritus-free biomass measurement, since 80% of the POP consist of phytoplankton phosphorus. The assimilation numbers (NA=μg C μg chl a -1 h-1) were high in all three layers, but the highest values were recorded in the nitrate-depleted mixed layer (NA=15 μg C μg chl a -1 h-1). In the chlorophyll maximum layer, light would be a limiting factor during incubation: between 1025 and 8.1024 quanta m-2 d-1 NA and light are positively correlated independant of nitrate concentration. The growth rates of phytoplankton (μ) were estimated and compared to the maximum expected growth rate. Our main conclusion was that despite very low biomass and nutrient content, the mixed layer was in a highly dynamic state, as evidenced by high rates of phytoplankton growth and short nutrient turnover times (1 d or less for PO-P4 in the mixed layer versus 3 d in the thermocline). The presence of nitrate in the water column allows the development of a higher phytoplankton biomass but does not increase growth rate.  相似文献   

15.
Zooplankton ingestion of phytoplankton carbon in the iceedge zone of the Eastern Bering Sea was measured using a deck incubation approach in 1982. Using further samples collected in 1983, the plant cell carbon to cell volume ratio was estimated at 0.0604 pg m–3 from an experimentally determined particulate carbon to seston volume relationship. The application of this conversion to the results of experimental incubations of natural plant stocks with net-caught zooplankton produced ingestion rates of 68.8 and 10.26 mg C g–1 grazer d–1 for copepods and euphausiids, respectively. Extrapolating these rates to in situ zooplankton biomass at the edge of the seasonal ice pack yielded carbon flux rates through the zooplankton community ranging between 6.5 and 32.8 mg C m–2 d–1. This consumption amounted to less than 2% of the daily phytoplankton production in the ice-edge zone.  相似文献   

16.
Particulate organic carbon and nitrogen in sea water were measured in samples collected along a line 155°W; 50° N-15°S, during the cruise of R.V. “Hakuho-Maru” (KH-69-4). High concentrations of particulate matter were generally found at or near the sea surface; the concentrations decreased rapidly with depth. A consistent minimum was located in the depth range 150 to 250 m through the entire section sampled. The subsurface maximum layers roughly coincided with the chlorophyll maximum, but several irrregularities were noted. One of the most remarkable features of the vast stratum below 200 m depth was the presence of distinctively regional variation in concentration of particulate material through the entire section. In the section, we could define at least 6 large water parcels, vertically oriented, all with significantly different concentrations of both carbon and nitrogen. Variation in the deep water ranged from less than 5 μgC/l to more than 50 μgC/l. Correlation analysis between carbon concentration and apparent oxygen utilization (AOU) of ambient water for all samples showed that the carbon from particle-poor water parcels consistently decreased with increasing AOU, levelling to a practically constant low of around 5 to 10 μgC/l, whereas the carbon from particle-rich parcels was anomalously high (10 to 50 μgC/l) in the range of high AOU, and showed no consistent trend of convergence. The intergrated amount of particulate carbon in the total water column at each station was in the range 20 to 150 gC/m2. More than 90% of this total amount was in the water column below 200 m depth, and the correlation of total amount of particulate material between the surface layer (0 to 200 m) and the water column below 200 m depth was highly significant. These observations are considered to indicate that the downward transport of these materials may be much quicker than so far estimated, at least in some localized areas.  相似文献   

17.
The Strait of Otranto is the connection between the Adriatic and Ionian Seas. Low nutrient concentrations, high transparency, and low phytoplankton cell density and biomass reflect the oligotrophic character of the area. Enrichment of the euphotic layer with nutrients is mainly due to discharge of Albanian and Greek rivers, as well as mixing and upwelling in winter/early spring. Following phytoplankton bloom in April, a progressive decrease of phytoplankton cell density is due to the consumption of nutrients throughout the proceeding summer and autumn. Nitrogen was a strong limiting factor for phytoplankton growth in summer. Deep biomass maxima were detected in the 50 to 100 m layer and corresponded mostly to cells smaller than 20 m. The eastern part of the strait is mostly influenced by the northerly inflowing current from the Ionian Sea, and the western part by the southerly outflowing current from the Adriatic Sea. This typical circulation could be disturbed by inertial oscillations in the current field, generated by the strong oscillating winds and cyclonic eddies. The type of circulation determined the distribution of thermohaline characteristics, abundance, biomass, as well as taxonomic composition of phytoplankton, across the strait. Ecological characteristics of the water masses on two sides of the strait were significantly different during the formation of a longitudinal thermohaline front in May 1990.  相似文献   

18.
Taxonomic composition, biomass, primary production and growth rates of the phytoplankton community were studied in two stations in the NW Adriatic Sea on a seasonal basis, in areas characterized by differing hydrological and trophic conditions. The main differences between the two stations were quantitative rather than qualitative, most phytoplankton species being common to both stations. The effects of differing nutrient concentrations and plume spreading were evident. Biomass and primary production rates were significantly higher in the coastal station (S1), and the phytoplankton distribution in the water column was markedly stratified in S1 and more even in the offshore station (S3). However, chlorophyll a specific production, potential growth rate and production efficiencies were very similar in both stations, even when phosphorus concentrations were limiting. A discrepancy between potential and actual growth rate was observed: as a feature common to both stations, comparisons between potential and actual growth rates revealed that little carbon produced by phytoplankton accumulated as algal biomass; therefore, very high loss rates were estimated.  相似文献   

19.
Taxonomic composition, biomass, primary production and growth rates of the phytoplankton community were studied in two stations in the NW Adriatic Sea on a seasonal basis, in areas characterized by differing hydrological and trophic conditions. The main differences between the two stations were quantitative rather than qualitative, most phytoplankton species being common to both stations. The effects of differing nutrient concentrations and plume spreading were evident. Biomass and primary production rates were significantly higher in the coastal station (S1), and the phytoplankton distribution in the water column was markedly stratified in S1 and more even in the offshore station (S3). However, chlorophyll a specific production, potential growth rate and production efficiencies were very similar in both stations, even when phosphorus concentrations were limiting. A discrepancy between potential and actual growth rate was observed: as a feature common to both stations, comparisons between potential and actual growth rates revealed that little carbon produced by phytoplankton accumulated as algal biomass; therefore, very high loss rates were estimated.  相似文献   

20.
The plankton community in the Polar Front area of the Barents Sea was investigated during a cruise from 14 to 28 July 1987. The colonial algaePhaeocystis pouchetii andDinobryon pellucidum dominated the phytoplankton. Depth integrated carbon assimilation rates varied from 190 to 810 mg C m–2 d–1. A high carbon:chlorophyll ratio (which varied from 123 to 352) prevailed at the three stations investigated, which may relate to facultative heterotrophic behaviour byD. pellucidum. The herbivorous zooplankton community was dominated byCalanus glacialis, C. finmarchicus, andC. hyperboreus. Maximum zooplankton biomass was found in the same depth strata as phytoplankton chlorophyll maximum. The herbivorous copepod populations did not display consistent day-night vertical migration patterns. Phytoplankton consumption rates of the various life stages were estimated from the turnover rate of plant pigments in the gut. The gut defecation rate constant (R) varied from 0.014 to 0.027 min–1 at 0°C in copepodites (Stage II to adult female) ofC. glacialis, independent of developmental stage.Calanus spp. community carbon ingestion rates calculated from particulate carbon:chlorophyll ratios, were 10, 65 and 400% of daily phytoplankton carbon fixation rates at Stations 1, 2 and 3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号