首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the deposition of particulate in the respiratory system is strongly influenced by particle size, a correct assessment of this parameter is important for any inhalation experiment studying the potential health effects of air pollutants. Measuring the distribution of particles according to their aerodynamic diameter and mechanical mobility diameter is crucial in analyzing the deposition of submicron particles in the lower respiratory system. Cascade impactor measurements of diluted diesel exhaust in 12.6 m3 animal exposure chambers in the GMR Biomedical Science Department showed that the mass median aerodynamic diameter of the aerosol was 0.2 μm with 88% of the mass in particles smaller than 1 μm. Diffusion battery measurements showed that the mass median mechanical mobility diameter was about 0.11 μm. Transmission electron micrographs of particles deposited on chamber surfaces revealed both agglomerates and nearly spherical particles. The particles in these chambers are similar in size and shape to diesel particles described elsewhere. The flux of diesel particles to food surfaces was measured. Calculations of the expected daily dose by inhalation and by feeding showed that the “worst case” dose by feeding was only about one-tenth the dose by breathing.  相似文献   

2.
On 15 dates, 5000 measurements of carbon monoxide (CO) were made in downtown commercial settings in four California towns and cities (San Francisco, Palo Alto, Mountain View, and Los Angeles), using personal exposure monitoring (PEM) instruments. Altogether, 588 different commercial settings were visited, and indoor and outdoor locations were sampled at each setting. On 11 surveys, two CO PEM's were carried about 0.15–6 m apart, giving 1706 pairs of observations that showed good agreement: the correlation coefficient was r = 0.97 or greater, and the average difference was less than 1 ppm (μL/L) by volume. Of 210 indoor settings (excluding parking garages), 204 (97.1%) had average CO concentrations less than 9 ppm (μL/L); of 368 outdoor settings, 356 (96.7%) had average CO concentrations less than 9 ppm (μL/L). For a given date and commercial setting, CO concentrations were found to be relatively stable over time, permitting levels to be characterized by making only brief visits to each setting. The data indicate that most commercial settings experience CO concentrations above zero indoors, because CO tends to seep into buildings from vehicular emissions outside. Levels in these locations usually are not above 5 ppm (μL/L) and seldom are higher than the U.S. health-related ambient air quality standards for CO. However, indoor garages and buildings with attached indoor parking areas are exceptions and can experience relatively high CO concentrations.  相似文献   

3.
A sample of 58 occupied homes in Rochester, NY, most of which incorporated special builder-designed weatherization components, were studied to assess (1) the effectiveness of construction techniques designed to reduce air leakage; (2) the indoor air quality and air-exchange rates in selected airtight houses, and (3) the impact on indoor air quality of mechanical ventilation systems employing air-to-air heat exchangers. The “specific leakage area” was measured in each house using the fan pressurization technique. Houses built with polyethylene vapor barriers and joint-sealing were as a group 50% tighter than a similar group of houses without such components. Mechanical ventilation systems with air-to-air heat exchangers were installed in nine relatively airtight houses, some of which had gas stoves and/or tobacco smoking occupants. Air-exchange rates and indoor concentrations of radon (Rn), formaldehyde (HCHO), nitrogen dioxide (NO2), and humidity were measured in each house for 1-week periods with and without mechanical ventilation. More detailed measurements, including concentrations of carbon monoxide and inhalable particulates, were made in two of these houses by a mobile laboratory. In all nine houses, air-exchange rates were relatively low (0.2–0.5 ach) without mechanical ventilation, and yet indoor concentrations of Rn, HCHO, and NO2 were below existing guidelines. Mechanical ventilation systems were effective in further reducing indoor contaminant concentrations. We conclude that when contaminant source strengths are low, acceptable indoor air quality can be compatible with low air-exchange rates.  相似文献   

4.
This study was performed to investigate the concentration of PM10 and PM2.5 inside trains and platforms on subway lines 1, 2, 4 and 5 in Seoul, KOREA. PM10, PM2.5, carbon dioxide (CO2) and carbon monoxide (CO) were monitored using real-time monitoring instruments in the afternoons (between 13:00 and 16:00). The concentrations of PM10 and PM2.5 inside trains were significantly higher than those measured on platforms and in ambient air reported by the Korea Ministry of Environment (Korea MOE). This study found that PM10 levels inside subway lines 1, 2 and 4 exceeded the Korea indoor air quality (Korea IAQ) standard of 150 μg/m3. The average percentage that exceeded the PM10 standard was 83.3% on line 1, 37.9% on line 2 and 63.1% on line 4, respectively. PM2.5 concentration ranged from 77.7 μg/m3 to 158.2 μg/m3, which were found to be much higher than the ambient air PM2.5 standard promulgated by United States Environmental Protection Agency (US-EPA) (24 h arithmetic mean: 65 μg/m3). The reason for interior PM10 and PM2.5 being higher than those on platforms is due to subway trains in Korea not having mechanical ventilation systems to supply fresh air inside the train. This assumption was supported by the CO2 concentration results monitored in tube of subway that ranged from 1153 ppm to 3377 ppm. The percentage of PM2.5 in PM10 was 86.2% on platforms, 81.7% inside trains, 80.2% underground and 90.2% at ground track. These results indicated that fine particles (PM2.5) accounted for most of PM10 and polluted subway air. GLM statistical analysis indicated that two factors related to monitoring locations (underground and ground or inside trains and on platforms) significantly influence PM10 (p < 0.001, R2 = 0.230) and PM2.5 concentrations (p < 0.001, R2 = 0.172). Correlation analysis indicated that PM10, PM2.5, CO2 and CO were significantly correlated at p < 0.01 although correlation coefficients were different. The highest coefficient was 0.884 for the relationship between PM10 and PM2.5.  相似文献   

5.
A new automated version of the piezoelectric microbalance measures the mass concentration of airborne particles smaller than a preselected aerodynamic cutoff diameter. It is designed for near-real-time, unattended, round-the-clock measurements of nearly any aerosol environment inhabited by humans. The instrument uses an electrostatic precipitator to deposit particles with greater than 95% efficiency onto a piezoelectric quartz crystal sensor which is able to detect a deposit of 0.005 μg. The precipitator and sensor are nearly identical to those in the portable instrument reported previously. Measurements comparing within ± 15% with gravimetrically measured filter samples are documented for a wide variety of aerosols in the 50 μg/m3 to 5.5 mg/m3 range. The instrument measures particles from 10 μm down to 0.01 μm in diameter, including submicron combustion smokes and metallic fumes. The piezoelectric microbalance technique senses the mass concentration of the aerosol, rather than light scattering properties as is done by photometers and nephelometers. The piezobalance, with 1 L/min sample flow, is more sensitive than any other mass-sensing instrument, making it especially suited for low concentration indoor measurements, even below 50 μg/m3. An automatic piezobalance recently measured respirable aerosol mass concentrations in several offices. Each measurement was the average concentration during a 30-min period. The 24-h/day measurements continued for several days. Especially interesting is the diurnal pattern, both for offices with and without smokers. The effect of a single nearby smoker was clearly illustrated when the smoker was absent one day in the middle of a week. Normal daytime peak concentrations in that office reached 80–110 μg/m3 with a smoker present, but only 50–60 μg/m3 when the smoker was absent. Curious smokers who briefly stopped byt o see the instrument caused single half-hour averages to triple, to values as high as 294 μg/m3 in one office.  相似文献   

6.
A standardized questionnaire was used in a two-year follow-up study to test the effectiveness of non-regulatory recommendations to improve indoor air quality of 103 ice arenas in Finland. In addition, the performance of a state-of-the-art emission control technology (ECT) on propane-fueled resurfacers was evaluated by measuring the one-week average nitrogen dioxide (NO2) concentration in a small sample of arenas. The number of retrofitted ECT on propane-fueled resurfacers increased from 6 to 37 (8% to 37% of ice arenas) and the number of electric resurfacers from 7 to 9 (both 9% of arenas) in 1994–1996. At the same time, the prevalence of inadequate ventilation increased among the most susceptible small arenas (volume <30 000 m3) from 11 (31%) to 19 (38%). Combustion-powered resurfacers (88%) and inadequate ventilation (24%) were prevalent also among the 17 new arenas built in 1994–1996. ECT resurfacers significantly decreased the mean indoor NO2 concentration of eleven arenas from 650 μg/m3 to 147 μg/m3. Thus, retrofitting resurfacers with ECT seems to be a feasible mitigation option to improve indoor air quality in ice arenas, but the ultimate solution is an electric ice resurfacer. Non-regulatory recommendations seem to be partially effective in abatement against the air quality problems, but additional regulatory measures are needed for full compliance in all arenas.  相似文献   

7.
One hundred and ninety-four randomly selected nonsmoking subjects collected air samples in their breathing zone by wearing personal monitors for 24 h. The study was centered in Hong Kong, and comprised housewives in one group, primarily for assessing exposures in the home, and office workers in a second group to assess the contribution of the workplace to overall exposure. Samples collected were analysed for respirable suspended particles (RSP), nicotine, 3-ethenylpyridine, and environmental tobacco smoke (ETS) particles using ultraviolet absorbance (UVPM), fluorescence (FPM), and solanesol measurements (SolPM). Saliva cotinine analyses were also undertaken to confirm the nonsmoking status of the subjects and to investigate their correlation with ETS exposure measurements. Approximately 6% of the subjects in Hong Kong misclassified their nonsmoking status. Median time-weighted average (TWA) RSP concentrations varied from 43 to 54 μg m−3 with no significant differences detected between any of the groups investigated. Office workers who lived and worked with smokers were exposed to 2.6 μg m−3 ETS particles (SolPM) and 0.44 μg m−3 nicotine, based on median TWA concentrations. Median concentrations of ETS particles and nicotine were below the limits of quantification for housewives living with smokers and were not significantly different from those for housewives living with nonsmokers. It would therefore be unreliable in Hong Kong to use a smoking spouse as a marker for assessing health risks related to ETS exposure. The office workers in this study were significantly more exposed to ETS than housewives from either smoking or nonsmoking homes, and the workplace was estimated to contribute over 33% of the annual exposure to ETS particles and nicotine. Exposure estimates suggest that the most highly exposed office workers in this study receive between 11 and 50 cigarette equivalents per year, based upon upper decile levels for ETS particles and nicotine, respectively.  相似文献   

8.
The relationship between the odor strength of total air samples and the odor strengths of the constituents was investigated in three field experiments in an office building and a new preschool. The odor strength was scaled by magnitude estimation according to a master scale principle which results in comparable values for the total and the constituent odors. Between 60 and 120 chemical components were detected by GC/FID in the indoor air samples (N = 66). Most (81%) of the detected components in an air sample were odorous, even though most of them were of the low concentrations. By a method of pattern analysis, chemical as well as odor patterns of indoor air were found to be characteristics of different buildings. From the odor patterns (POG), the “odor print” of the outdoor air associated with the buildings was also recognized in the indoor air. Thus, the “odor print” of an air sample is different from its “chemical print”. A model was found that predicts the overall odor strength of an air sample from the number of FID-detected components most frequently reported to have a strong odor.  相似文献   

9.
Fly ash samples were collected from the electrostatic precipitator of a coal-fired power plant in Hong Kong. The particles of the respirable range (smaller than 10 μm) were divided into 4 groups according to their particle size (mass median aerodynamic diameters). The surface morphology and the metal contents (Fe, Mn, Al and Zn) of fly ash particles were examined by a scanning electron microscope and an inductively coupled plasma spectrophotometer, respectively. The particles were very heterogenous in size and shape as well as the concentration of metals. The cytotoxicity of these four groups of fly ash particles was evaluated using an in vitro rat alveolar macrophages culture assay. The viability of alveolar macrophages was lower when incubated with smaller size particles. This relationship was also reflected by the damage of the surface morphology of the cells and the release of cytoplasmic (lactate dehydrogenase) and lysosomal (acid phosphatase and β-glucuronidase) marker enzymes into the culture media.  相似文献   

10.
A chronic exposure study was initiated to determine the effects of diesel exhaust on the health of experimental animals. For this purpose, test atmospheres of clean air (control) or freshly diluted diesel exhaust at concentrations of 250, 750, and 1500 μg/m3 were supplied to four 12.6 m3 inhalation chambers which housed rats and guinea pigs. Diesel aerosol size and concentration, as well as chamber temperature and relative humidity, were continually monitored and controlled to maintain the exposure dose levels and an environment of 22±2°C and 50%±20% relative humidity. The concentrations of CO and NOx were found to be 5.8±1.0 mg/m3 and 7.9±1.0 mg/m3 above ambient in the chamber containing 1500 μg/m3 of particulate. Animals were supplied from the chambers, on a random basis, for both intramural and extramural studies throughout the exposure period. The experiment ran uninterrupted for over twelve months with mean diesel particle mass concentrations within 2% of the target values.  相似文献   

11.
In recent years, scientist have come to realize that contaminated air inside buildings is a major route of human exposure to certain air pollutants. While scientific interest in the problem continues to grow, efforts to measure indoor pollution concentrations, define exposure levels, and estimate health risks remain in their infancy. Within this arena, policymakers must deal with the question of how best to protect public health and safety in the face of incomplete and often contradictory information. In the past, official response to environmental pollution has traditionally taken the form of “control by regulation.” However, creation of a regulatory framework for indoor air quality poses special policy issues that suggest the need to explore alternative modes of intervention. Ambient outdoor air is a public good, in the sense that enjoyment by one individual in no way detracts from use or enjoyment by others. Indoor air, on the other hand, is not a public good, especially in private residences. Costs and benefits of maintaining adequate indoor air quality are internalized within households, suggesting the possibility of a private demand for clean indoor air. Promulgation of indoor air quality standards and other regulations must confront the fact that individuals are already making decisions about their own air quality. Regulations might or might not improve these decisions. Development of effective and reasonable policy requires an appreciation of the scope for private action and consideration of the likelihood that public intervention will foster improved private choices. Among the logical and relatively inexpensive modes of intervention are public information programs, development of simple warning devices, and product testing and labeling.  相似文献   

12.
Two microbial extracellular enzyme activities (MEEA) were studied in HUMEX Lake Skjervatjern: acid phosphatase (APHA) and leucine aminopeptidase (LeuAMPA). Both enzyme activities varied in the vertical and horizontal scale in both lake sites. APHA varied in the acidfied Basin A between 945–1706 nmol L−1 h−1 and LeuAMPA between 3.7–25 nmol L−1 h−1. Both MEEA reached maxima in 0.5 m depth. In the control site (Basin B), APHA was lower by a factor of two, and varied between 156–669 nmol L−1 h−1. LeuAMPA reached similar values as in Basin A and varied between 7.8–34.8 nmol L−1 h−1. Maxima of APHA were found in the upper layer (0–2 m), while LeuAMPA had only one distinct maxima at 2–2.5 m depth. The number of bacteria (AFDC) varied between 4.4–8.8 106 cells mL−1 and was not significantly different in either side, but both had maxima in the thermocline. Highest specific LeuAMPA activities were found in the thermocline (3.2–4.5 fmol L−1 h−1 cell−1) in both sides and varied between 0.4–4.5 fmol L−1 h−1 cell−1 in both water columns. The main contributor (60–70%) to LeuAMPA was found in the microplankton fraction, retained on Nuclepore filters with pore sizes between 2.0-0.2 μm. APHA was retained less even on a filter with pore size smaller than 0.2 μm. About 50–70% of APHA passed through 0.2 μm-0.1 μm Nuclepore filters and could be found in the dissolved organic matter (DOM) fraction. APHA and bacteria counts (AFDC) showed a distinct gradient from the littoral zone to the pelagial in the surface water samples (0.2 m depth). APHA and LeuAMPA are regarded as important regulators for nutrient availability to microplankton. However, all data from vertical as important regulators for nutrient availability to microplankton. However, all data from vertical and horizontal samples showed that Lake Skjervatjern is a strongly gradient-dominated aquatic ecosystem. Watershed-littoral effects are more pronounced in the shallow, acidified Basin A than in the control side, Basin B.  相似文献   

13.
The air quality in a newly built preschool was investigated in a longitudinal study. Typical air contaminants emanating from building materials were determined, their variation over time (0–18 months) was measured, and the influence of the ventilation system (81%–91% recirculation of return air) on contaminant concentrations was studied. Volatile organic compounds were sampled by adsorption on porous polymer, analysed by a GC/FID system, and identified by MS. A spatial build-up in concentration (ppb or μg/m3 levels) is evident for all the organic compounds, as well as for CO2, from the outdoor air, through the ventilation system, and through the rooms to the exhaust air. The longitudinal comparison over time shows that all the organic compounds decline in concentration mainly within the first 6 months of occupancy: 1-butanol 4–14 times, toluene and pentanal + hexanal 2–4 times, while formaldehyde remained at a constant low level of 90 ppb (110 μg/m3). It is difficult to believe that the problems of poor air quality in 100 preschools in Stockholm are caused by the organic compounds alone unless interactions occur. A preschool building needs to be gassed off during the first 6 months after its construction with no recirculation of return air allowed (outdoor air rate approx 4–5 ach). During at least 1–2 additional years, it is desired that the recirculation rate of return air is restricted, perhaps to 50%.  相似文献   

14.
This report presents results of a review of available methods for control of environmental hazards applied to indoor air pollutants. Indoor air pollution originates from transport of ambient outdoor air contaminants into occupied spaces by natural infiltration ventilation, or by mechanical ventilation using outdoor makeup air, plus contributions from indoor emission sources. When air exchange with the external ambient environment is reduced to conserve energy, contributions from indoor emission sources may dominate indoor air pollutant levels. This paper identifies alternative methods available to control indoor air pollutant exposures. The performance characteristics of ventilation systems and of air cleaning devices used in mixed modes for ventilation of occupied spaces are described. Models for predicting effectiveness of several alternative modes are reviewed, with field trial validation results cited where available. Results of previous confined-space studies are briefly reviewed as points of departure for consideration of necessary air quality, ventilation, and air cleaning. Understanding of indoor air contaminant generation and controls is aided by examination of earlier studies of indoor air quality, using modern perspectives on occupational environmental health and hygiene.  相似文献   

15.
Leaves of six plant species from 31 different locations in Ibadan, Nigeria, were analysed for their lead content. The lead concentrations found ranged between 12 and 32 μg/g, 50 m or more away from the roadside, between 47 and 115 μg/g in the residential low traffic density areas, 5 m from the roadside, and between 165 and 312 μg/g in the commercial high traffic density roadsides, 5 m away from the roadside.  相似文献   

16.
This paper describes the historical development and current legislation to control photochemical oxidant pollution in OECD countries. Policies for implementing, attaining, and maintaining ambient air quality standards or goals are discussed, problems associated with the various steps are highlighted, and the possibility of international policy guidelines which could control pollution across national frontiers is considered. To date, only a few countries have formulated ambient air quality standards for ozone/ oxidants; these standards are usually short-term averages over 1 h, ranging from 0.06 ppm (μL/L) in Japan to 0.12 ppm (μL/L) in the United States. The current interest in air quality management on an international scale leads to the conclusion that successful control of photochemical oxidant pollution would be best accomplished through the establishment of internationally acceptable standards or goals for oxidants/ozone based on health effects and other relevant environmental impacts, in combination with control strategies developed and implemented on an international level.  相似文献   

17.
Measurement of personal exposure to ambient level particulate concentrations is often extremely difficult because of a lack of personal exposure monitors capable of collecting measurable quantities within a meaningful sampling period. A new personal exposure monitor for two fractions of inhalable particulates (i.e., the 3–15 μm aerodynamic diameter and the < 3 μm or respirable fraction) has been developed and characterized. This monitor is capable of collecting a sample of each fraction that is quantifiable with ambient concentrations of inhalable/respirable particulates as low as 25 μg/m3 in a 24-h sampling period. Wind tunnel tests have been made on the particulate personal exposure monitor to determine sampling efficiency as a function of relative wind speed and orientation with respect to the sampler.  相似文献   

18.
The concentrations of environmental tobacco smoke (ETS) constituents including benzene were measured in the living rooms of 10 nonsmoking households and 20 households with at least one smoker situated in the city and suburbs of Munich. In the city, the median benzene levels during the evening, when all household members were at home, were 8.1 and 10.4 μg/m3 in nonsmoking and smoking homes, respectively. The corresponding levels of 3.5 and 4.6 μg/m3 were considerably lower in the suburbs. Median time-integrated 1-week benzene concentrations in the city were 10.6 μg/m3 in nonsmoking homes and 13.1 μg/m3 in smoking homes. In the suburbs, the corresponding values were 3.2 and 5.6 μg/m3. While the benzene concentrations in nonsmoking homes located in the city were significantly higher (p < 0.05) than in suburban nonsmoking households, no difference was found between smoking and nonsmoking households located either in the city or in the suburbs. Individual exposures to benzene and to specific markers for tobacco smoke of all household members (82 nonsmokers and 32 smokers) were determined by questionnaire, personal monitoring, and biomonitoring. Within the city, the benzene exposure determined by personal samplers was 11.8 μg/m3 for nonsmokers living in nonsmoking homes and 13.3 μg/m3 for nonsmokers in smoking homes. The corresponding values for nonsmokers living in the suburbs were 5.9 and 6.9 μg/m3, respectively. Neither difference was statistically significant. Nonsmokers living in nonsmoking households in the city had significantly higher exposure to benzene compared to their counterparts living in the suburbs (personal samplers: 11.8 vs 5.9 μg/m3, p < 0.001; benzene in exhalate: 2.4 vs. 1.1 μg/m3, p < 0.05; trans,trans-muconic acid excretion in urine: 92 vs. 54 μg/g creatinine, p < 0.05). Nonsmokers from all households with smokers were significantly more exposed to benzene than nonsmokers living in the nonsmoking households (personal samplers: 13.2 vs. 7.0 μg/m3, p < 0.05; benzene in exhalate: 2.6 vs. 1.8 μg/m3, p < 0.01; trans,trans-muconic acid excretion in urine: 73 vs. 62 μg/g creatinine), but the contribution of ETS to the total benzene exposure was relatively low compared to that from other sources. Analysis of variance showed that at most 15% of the benzene exposure of nonsmokers living in smoking homes was attributable to ETS. For nonsmokers living in nonsmoking households benzene exposure from ETS was insignificant.  相似文献   

19.
Trihalomethanes (THMs) (chloroform, bromoform, dibromochloromethane, and bromodichloromethane) are the most abundant by-products of chlorination. People are exposed to THMs through ingestion, dermal contact and inhalation. The objective of this study was to compare two methods for assessing THM inhalation: a direct method with personal monitors assessing continuous exposure and an indirect one with microenvironmental sampling and collection of time–activity data during the main event exposures: bathing, showering and swimming. This comparison was conducted to help plan a future epidemiologic study of the effects of THMs on the upper airways of children. 30 children aged from 4 to 10 years were included. They wore a 3M 3520 organic vapor monitor for 7 days. We sampled air in their bathrooms (during baths or showers) and in the indoor swimming pools they visited and recorded their time–activity patterns. We used stainless steel tubes full of Tenax® to collect air samples. All analyses were performed with Gas Chromatography and Mass Spectrometry (GC-MS). Chloroform was the THM with the highest concentrations in the air of both bathrooms and indoor swimming pools. Its continuous and event exposure measurements were significantly correlated (rs = 0.69 p < 0.001). Continuous exposures were higher than event exposures, suggesting that the event exposure method does not take into account some influential microenvironments. In an epidemiologic study, this might lead to random exposure misclassification, thus underestimation of the risk, and reduced statistical power. The continuous exposure method was difficult to implement because of its poor acceptability and the fragility of the personal monitors. These two points may also reduce the statistical power of an epidemiologic study. It would be useful to test the advantages and disadvantages of a second sample in the home or of modeling the baseline concentration of THM in the home to improve the event exposure method.  相似文献   

20.
High natural radiation areas in the coastal and peninsular India were studied for airborne thorium and resultant population exposure due to inhalation. Four locations covering three states viz., Ayiramthengu and Neendakara in Kerala, Kudiraimozhi in Tamil Nadu and Bhimilipatnam in Andhra Pradesh were investigated. External gamma radiation fields 1 m above the monazite ore bodies ranged from 200 to 3000 nGy h-1. Soil samples showed 232Th specific activity varying from 0·1 to 1·5 Bq g-1 with surface alpha activity in the range of 1·0–12·5 Bq cm-2. Suspended particulates in the samples ranged from 60–140 μg m-3 with 232Th showing a wider variation of <0·03–0·3 mBq m-3. There was poor correlation between suspended particulates and long-lived alpha airborne activity . The resuspension factors for 232Th were in the range of 1·5×10-8–7·9×10-7 cm-1. Higher resuspension was correlated with dry sand dunes. The upper limits for Committed Effective Dose (CED) due to inhalation of airborne 232Th at the respective high natural radiation areas were estimated to range from 50±30 to 300±130 μSv (5–30 mrem) per year per adult member of public assuming an activity median aerodynamic diameter of 1 μm for the airborne particulates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号