首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
Introduction: Motorcyclists are exposed to more fatalities and severe injuries per mile of travel as compared to other vehicle drivers. Moreover, crashes that take place at intersections are more likely to result in serious or fatal injuries as compared to those that occur at non-intersections. Therefore, the purpose of this study is to evaluate the contributing factors to motorcycle crash severity at intersections. Method: A data set of 7,714 motorcycle crashes at intersections in the State of Victoria, Australia was analyzed over the period of 2006–2018. The multinomial logit model was used for evaluating the motorcycle crashes. The severity of motorcycle crashes was divided into three categories: minor injury, serious injury and fatal injury. The risk factors consisted of four major categories: motorcyclist characteristics, environmental characteristics, intersection characteristics and crash characteristics. Results: The results of the model demonstrated that certain factors increased the probability of fatal injuries. These factors were: motorcyclists aged over 59 years, weekend crashes, midnight/early morning crashes, morning rush hours crashes, multiple vehicles involved in the crash, t-intersections, crashes in towns, crashes in rural areas, stop or give-way intersections, roundabouts, and uncontrolled intersections. By contrast, factors such as female motorcyclists, snowy or stormy or foggy weather, rainy weather, evening rush hours crashes, and unpaved roads reduced the probability of fatal injuries. Practical Applications: The results from our study demonstrated that certain treatment measures for t-intersections may reduce the probability of fatal injuries. An effective way for improving the safety of stop or give-way intersections and uncontrolled intersections could be to convert them to all-way stop controls. Further, it is recommended to educate the older riders that with ageing, there are physiological changes that occur within the body which can increase both crash likelihood and injury severity.  相似文献   

2.
IntroductionMany U.S. cities have adopted the Vision Zero strategy with the specific goal of eliminating traffic-related deaths and injuries. To achieve this ambitious goal, safety professionals have increasingly called for the development of a safe systems approach to traffic safety. This approach calls for examining the macrolevel risk factors that may lead road users to engage in errors that result in crashes. This study explores the relationship between built environment variables and crash frequency, paying specific attention to the environmental mediating factors, such as traffic exposure, traffic conflicts, and network-level speed characteristics. Methods: Three years (2011–2013) of crash data from Mecklenburg County, North Carolina, were used to model crash frequency on surface streets as a function of built environment variables at the census block group level. Separate models were developed for total and KAB crashes (i.e., crashes resulting in fatalities (K), incapacitating injuries (A), or non-incapacitating injuries (B)) using the conditional autoregressive modeling approach to account for unobserved heterogeneity and spatial autocorrelation present in data. Results: Built environment variables that are found to have positive associations with both total and KAB crash frequencies include population, vehicle miles traveled, big box stores, intersections, and bus stops. On the other hand, the number of total and KAB crashes tend to be lower in census block groups with a higher proportion of two-lane roads and a higher proportion of roads with posted speed limits of 35 mph or less. Conclusions: This study demonstrates the plausible mechanism of how the built environment influences traffic safety. The variables found to be significant are all policy-relevant variables that can be manipulated to improve traffic safety. Practical Applications: The study findings will shape transportation planning and policy level decisions in designing the built environment for safer travels.  相似文献   

3.
Introduction: The pedestrian hybrid beacon (PHB) is a traffic control device used at pedestrian crossings. A recent Arizona Department of Transportation research effort investigated changes in crashes for different severity levels and crash types (e.g., rear-end crashes) due to the PHB presence, as well as for crashes involving pedestrians and bicycles. Method: Two types of methodologies were used to evaluate the safety of PHBs: (a) an Empirical Bayes (EB) before-after study, and (b) a long-term cross-sectional observational study. For the EB before-after evaluation, the research team considered three reference groups: unsignalized intersections, signalized intersections, and both unsignalized and signalized intersections combined. Results: For the signalized and combined unsignalized and signalized intersection groups, all crash types considered showed statistically significant reductions in crashes (e.g., total crashes, fatal and injury crashes, rear-end crashes, fatal and injury rear-end crashes, angle crashes, fatal and injury angle crashes, pedestrian-related crashes, and fatal and injury pedestrian-related crashes). A cross-sectional study was conducted with a larger number of PHBs (186) to identify relationships between roadway characteristics and crashes at PHBs, especially with respect to the distance to an adjacent traffic control signal. The distance to an adjacent traffic signal was found to be significant only at the α = 0.1 level, and only for rear-end and fatal and injury rear-end crashes. Conclusions: This analysis represents the largest known study to date on the safety impacts of PHBs, along with a focus on how crossing and geometric characteristics affect crash patterns. The study showed the safety benefits of PHBs for both pedestrians and vehicles. Practical Applications: The findings from this study clearly support the installation of PHBs at midblock or intersection crossings, as well as at crossings on higher-speed roads.  相似文献   

4.
IntroductionThis study provides a systematic approach to investigate the different characteristics of weekday and weekend crashes.MethodWeekend crashes were defined as crashes occurring between Friday 9 p.m. and Sunday 9 p.m., while the other crashes were labeled as weekday crashes. In order to reveal the various features for weekday and weekend crashes, multi-level traffic safety analyses have been conducted. For the aggregate analysis, crash frequency models have been developed through Bayesian inference technique; correlation effects of weekday and weekend crash frequencies have been accounted. A multivariate Poisson model and correlated random effects Poisson model were estimated; model goodness-of-fits have been compared through DIC values. In addition to the safety performance functions, a disaggregate crash time propensity model was calibrated with Bayesian logistic regression model. Moreover, in order to account for the cross-section unobserved heterogeneity, random effects Bayesian logistic regression model was employed.ResultsIt was concluded that weekday crashes are more probable to happen during congested sections, while the weekend crashes mostly occur under free flow conditions. Finally, for the purpose of confirming the aforementioned conclusions, real-time crash prediction models have been developed. Random effects Bayesian logistic regression models incorporating the microscopic traffic data were developed. Results of the real-time crash prediction models are consistent with the crash time propensity analysis. Furthermore, results from these models would shed some lights on future geometric improvements and traffic management strategies to improve traffic safety.Impact on IndustryUtilizing safety performance to identify potential geometric improvements to reduce crash occurrence and monitoring real-time crash risks to pro-actively improve traffic safety.  相似文献   

5.
Objective: Research on factors associated with motorcycle fatalities among active duty U.S. Army personnel is limited. This analysis describes motorcycle crash–related injuries from 1995 through 2014 and assesses the effect of alcohol use and helmet use on the risk of fatal injury among active duty U.S. Army motorcycle operators involved in a traffic crash, controlling for other factors shown to be potentially associated with fatality in this population.

Methods: Demographics, crash information, and injury data were obtained from safety reports maintained in the Army Safety Management Information System. Traffic crashes were defined as crashes occurring on a paved public or private roadway or parking area, including those on a U.S. Army installation. Analysis was limited to motorcycle operators. Odds ratios (ORs) and 95% confidence intervals (95% CIs) from a multivariable analysis estimated the effect of alcohol use and helmet use on the risk of a fatal injury given a crash occurred, controlling for operator and crash characteristics.

Results: Of the 2,852 motorcycle traffic crashes, most involved men (97%), operators aged 20–29 years of age (60%), and operators who wore helmets (95%) and did not use alcohol (92%). Two thirds of reported crashes resulted in injuries requiring a lost workday; 17% resulted in fatality. Controlling for operator and crash characteristics, motorcycle traffic crashes involving operators who had used alcohol had a 3.1 times higher odds of fatality than those who did not use alcohol (OR =3.14; 95% CI, 2.17–4.53). Operators who did not wear a helmet had 1.9 times higher odds of fatality than those who did wear a helmet (OR =1.89; 95% CI, 1.24–2.89).

Conclusions: Among U.S. Army motorcycle operators, alcohol use and not wearing a helmet increased the odds of fatality, given that a crash occurred, and additional modifiable risk factors were identified. Results will help inform U.S. Army motorcycle policies and training.  相似文献   

6.
Objective: Motorcycle crashes are a significant road safety challenge, particularly in many low- and middle-income countries where motorcycles represent the vast majority of their vehicle fleet. Though risky riding behaviors, such as speeding and riding under the influence of alcohol, have been identified as important contributors to motorcycle crashes, little is understood about the effect of using a mobile phone while riding on motorcycle crash involvement. This article investigates crash involvement among motorcycle riders with risky riding behaviors, particularly using a mobile phone while riding.

Methods: Data were obtained from an online survey of university students’ risky riding behaviors in Vietnam administered between March and May 2016 (n?=?665).

Results: Results show that 40% of motorcycle riders reported to have experienced a crash/fall and nearly 24% of motorcycle riders indicated that they had been injured in a crash/fall. Effects of mobile phone use while riding on safety of motorcycle riders are highlighted. Specifically, more frequent use of a mobile phone for texting or searching for information while riding is associated with a higher chance of being involved in a crash/fall. The results also show that drink riding is associated with a higher chance of being injured.

Conclusions: Overall this article reveals significant safety issues of using a mobile phone while riding a motorcycle, providing valuable insight for designing education and publicity campaigns.  相似文献   

7.
OBJECTIVE: Signalized intersections are accident-prone areas especially for rear-end crashes due to the fact that the diversity of the braking behaviors of drivers increases during the signal change. The objective of this article is to improve knowledge of the relationship between rear-end crashes occurring at signalized intersections and a series of potential traffic risk factors classified by driver characteristics, environments, and vehicle types. METHODS: Based on the 2001 Florida crash database, the classification tree method and Quasi-induced exposure concept were used to perform the statistical analysis. Two binary classification tree models were developed in this study. One was used for the crash comparison between rear-end and non-rear-end to identify those specific trends of the rear-end crashes. The other was constructed for the comparison between striking vehicles/drivers (at-fault) and struck vehicles/drivers (not-at-fault) to find more complex crash pattern associated with the traffic attributes of driver, vehicle, and environment. RESULTS: The modeling results showed that the rear-end crashes are over-presented in the higher speed limits (45-55 mph); the rear-end crash propensity for daytime is apparently larger than nighttime; and the reduction of braking capacity due to wet and slippery road surface conditions would definitely contribute to rear-end crashes, especially at intersections with higher speed limits. The tree model segmented drivers into four homogeneous age groups: < 21 years, 21-31 years, 32-75 years, and > 75 years. The youngest driver group shows the largest crash propensity; in the 21-31 age group, the male drivers are over-involved in rear-end crashes under adverse weather conditions and the 32-75 years drivers driving large size vehicles have a larger crash propensity compared to those driving passenger vehicles. CONCLUSIONS: Combined with the quasi-induced exposure concept, the classification tree method is a proper statistical tool for traffic-safety analysis to investigate crash propensity. Compared to the logistic regression models, tree models have advantages for handling continuous independent variables and easily explaining the complex interaction effect with more than two independent variables. This research recommended that at signalized intersections with higher speed limits, reducing the speed limit to 40 mph efficiently contribute to a lower accident rate. Drivers involved in alcohol use may increase not only rear-end crash risk but also the driver injury severity. Education and enforcement countermeasures should focus on the driver group younger than 21 years. Further studies are suggested to compare crash risk distributions of the driver age for other main crash types to seek corresponding traffic countermeasures.  相似文献   

8.
Chih-Wei Pai 《Safety Science》2009,47(8):1097-1106
Evidence in literature suggested that motorists’ failure to give way to motorcycles at junctions is the main contributory factor to motorcycle–car accidents that involve gap acceptance (i.e., approach-turn and angle crashes). This paper attempts to examine how motorist’s failure to give way affects motorcyclist injury severity in angle crashes at T-junctions, while controlling for other factors (demographic, vehicle, crash, and environmental factors). Binary logistic models of motorcyclist injury severity were estimated using the data extracted from the Stats19 accident injury database (1991–2004). Angle collisions were classified into several sub-crashes based on the manoeuvres motorcycles and cars were making prior to the accidents. The modelling results showed that injuries were greatest when a travelling-straight motorcycle on the main road crashed into a right-turn car from the minor road, particularly at stop-/yield-controlled junctions. Such crash pattern was assumed to be an accident involving right-of-way violation. Using binary logistic models, factors determining the likelihood of motorist’s failure to yield to motorcycles were also examined. The implications of the research findings of this present study were provided.  相似文献   

9.
BackgroundPrevious research has identified teenage drivers as having an increased risk for motor-vehicle crash injury compared with older drivers, and rural roads as having increased crash severity compared with urban roads. Few studies have examined incidence and characteristics of teen driver-involved crashes on rural and urban roads.MethodsAll crashes involving a driver aged 10 through 18 were identified from the Iowa Department of Transportation crash data from 2002 through 2008. Rates of overall crashes and fatal or severe injury crashes were calculated for urban, suburban, rural, and remote rural areas. The distribution of driver and crash characteristics were compared between rural and urban crashes. Logistic regression was used to identify driver and crash characteristics associated with increased odds of fatal or severe injury among urban and rural crashes.ResultsFor younger teen drivers (age 10 through 15), overall crash rates were higher for more rural areas, although for older teen drivers (age 16 through 18) the overall crash rates were lower for rural areas. Rural teen crashes were nearly five times more likely to lead to a fatal or severe injury crash than urban teen crashes. Rural crashes were more likely to involve single vehicles, be late at night, involve a failure to yield the right-of-way and crossing the center divider.ConclusionsIntervention programs to increase safe teen driving in rural areas need to address specific risk factors associated with rural roadways.Impact on IndustryTeen crashes cause lost work time for teen workers as well as their parents. Industries such as safety, health care, and insurance have a vested interest in enhanced vehicle safety, and these efforts should address risks and injury differentials in urban and rural roadways.  相似文献   

10.
Objective: The objective of this study was to explore the factors affecting motorcycle crash severity in Ghana.

Methods: A retrospective analysis of motorcycle crash data between 2011 and 2015 was conducted using a motorcycle crash data set extracted from the National Road Traffic Crash Database at the Building and Road Research Institute (BRRI) in Ghana. Injury severity was classified into 4 categories: Fatal, hospitalized, injured, and damage only. A multinomial logit modeling framework was used to identify the possible determinants of motorcycle crash severity.

Results: During the study period, a total of 8,516 motorcycle crashes were recorded, of which 22.9% were classified as fatal, 42.1% were classified as hospitalized injuries, 29.4% were classified as slight injuries, and 5.6% were classified as damage-only crashes. The estimation results indicate that the following factors increase the probability of fatal injuries: At a junction; weekend; signage; poor road shoulder; village settlement; tarred and good road surface; and collision between motorcycle and heavy goods vehicle (HGV). Motorcycle crashes occurring during the daytime and on the weekend increases the probability of hospitalized injury. The results also suggest that motorcycle crashes occurring during the daytime, in curves or inclined portions of roads, or in unclear weather conditions decrease the probability of fatal injury.

Conclusions: This study provides further empirical evidence to support motorcycle crash modeling research, which is lacking in developing countries. The ability to understand the various factors that influence motorcycle crash severity is a step forward in providing an appropriate basis upon which informed motorcycle crash policies can be developed. Particular attention should be given to the provision of road signage at junctions and speed humps and controlling traffic during the weekend. In addition, road maintenance should be carried out periodically to address motorcycle safety in Ghana.  相似文献   


11.
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.  相似文献   

12.
IntroductionContributory factors to motorcycle crashes vary among populations depending on several aspects such as the users' profiles, the composition and density of traffic, and the infrastructure features. A better understanding of local motorcycle crashes can be reached in those places where a comprehensive analysis is performed. This paper presents the results obtained from a case study analysis of 400 police records of accidents involving motorcycles in Bogota.MethodTo achieve a deeper level of understanding of how these accidents occur, we propose a systemic approach that uses available crash data. The methodology is inspired by accident prototypical scenarios, a tool for analysis developed in France.ResultsWhen grouping cases we identified three categories: solo motorcycle accidents, motorcyclist and pedestrian accidents, and accidents involving a motorcycle and another vehicle. Within these categories we undertook in-depth analyses of 32 groups of accidents obtaining valuable information to better comprehend motorcyclists' road crashes in a local context. Recurrent contributory factors in the groups of accidents include: inexperienced motorcyclists, wide urban roads that incite speeding and risky overtaking maneuvers, flowing urban roads that encourage high speed and increased interaction between vehicles, and lack of infrastructure maintenance.Practical ApplicationsThe results obtained are a valuable asset to define measures that will be conveniently adapted to the group of accident on which we want to act. The methodology exposed in this paper is applicable to the study of road crashes that involve all types of actors, not only the motorcyclists, and in contexts different than those presented in Bogota.  相似文献   

13.
Introduction: Safety performance functions (SPF) are employed to predict crash counts at the different roadway elements. Several SPFs were developed for the various roadway elements based on different classifications such as functional classification and area type. Since a more detailed classification of roadway elements leads to more accurate crash predictions, multiple states have developed new classification systems to classify roads based on a comprehensive classification. In Florida, the new roadway context classification system incorporates geographic, demographic, and road characteristics information. Method: In this study, SPFs were developed in the framework of the FDOT roadway context classification system at three levels of modeling, context classification (CC-SPFs), area type (AT-SPFs), and statewide (SW-SPF) levels. Crash and traffic data from 2015-2019 were obtained. Road characteristics and road environment information have also been gathered along Florida roads for the SPF development. Results: The developed SPFs showed that there are several variables that influence the frequency of crashes, such as annual average daily traffic (AADT), signalized intersections and access point densities, speed limit, and shoulder width. However, there are other variables that did not have an influence in crash occurrence such as concrete surface and the presence of bicycle slots. CC-SPFs had the best performance among others. Moreover, network screening to determine the most problematic road segments has been accomplished. The results of the network screening indicated that the most problematic roads in Florida are the suburban commercial and the urban general roads. Practical Applications: This research provides a solid reference for decision-makers regarding crash prediction and safety improvement along Florida roads.  相似文献   

14.
IntroductionThis study examined the crash causative factors of signalized intersections under mixed traffic using advanced statistical models.MethodHierarchical Poisson regression and logistic regression models were developed to predict the crash frequency and severity of signalized intersection approaches. The prediction models helped to develop general safety countermeasures for signalized intersections.ResultsThe study shows that exclusive left turn lanes and countdown timers are beneficial for improving the safety of signalized intersections. Safety is also influenced by the presence of a surveillance camera, green time, median width, traffic volume, and proportion of two wheelers in the traffic stream. The factors that influence the severity of crashes were also identified in this study.Practical applicationAs a practical application, the safe values of deviation of green time provided from design green time, with varying traffic volume, is presented in this study. This is a useful tool for setting the appropriate green time for a signalized intersection approach with variations in the traffic volume.  相似文献   

15.
IntroductionThe primary objective of this paper is to evaluate the safety impacts of red-light running camera (RLC) system installation and then deactivation at 48 intersections in Houston, Texas. The second objective is to evaluate the spillover effect at nearby non-treated intersections in Houston after the deactivation.MethodsTo accomplish study objectives, an Empirical Bayes (EB) before-after analysis was used.ResultsThe results indicate statistically significant collision reductions on all red-light running (RLR) crash types (37 percent) as well as right-angle RLR crashes (47 percent) at the treated intersections after RLC activation. By way of comparison, the RLC deactivation analysis indicated that crashes increased by 20 percent for all RLR crash types and by 23 percent in right-angle RLR crashes at the formerly treated intersections. After deactivation, all severity RLR crashes increased more than expected at nearby non-treated intersections, which indicates the possibility of an adverse spillover effect. However, fatal/injury crashes associated with rear-end decreased after deactivation at both formerly treated and non-treated intersections, although those rear-end crashes account for smaller proportions when compared to all crash types/right-angle crashes.Practical applicationsOverall, removing RLC treatments results in a negative reaction to the safety benefits that the treatment provides when it is in place and actively working and to the nearby intersections where the treatment has not been implemented. This study helps define the effects that RLCs have on safety at signalized intersections after installation and deactivation.  相似文献   

16.
OBJECTIVE: This study was designed to evaluate the knowledge, attitude, and practice of some commercial motorcyclists in Nigeria in the use of crash helmet and other cycling safety measures. METHODS: At randomly selected commercial motorcycle parks from two South Western Nigerian locations (Lagos and Ile-Ife), we obtained verbal consent from commercial motorcyclists (randomly selected) and thereafter administered structured questionnaires to consenting motorcyclists. The questionnaire sought to know the respondents' biodata (age, gender, and educational attainment inclusive), cycling background, and experience (trainer, duration of training and cycling, and history of crashes). Furthermore, risk factors and practices like alcoholism, maintenance history of the motorcycle, maximum number of pillion passengers carried, and use of crash helmet were elicited. Respondents' knowledge of available safety measures was also investigated. Data was entered into an IBM compatible computer and analyzed using the SPSS 11.0 statistical software. Statistical significance was inferred at p value<0.05. RESULTS: There were 224 male respondents aged 15-58 years. Their peak age was 25-29 years and mean 35.1+/-8.9 years; 8.4% had no formal education; 10.3% received formal training but the majority were either trained by self (35.5%) or an acquaintance (34.6%). Training lasted相似文献   

17.
IntroductionDespite the numerous safety studies done on traffic barriers’ performance assessment, the effect of variables such as traffic barrier’s height has not been identified considering a comprehensive actual crash data analysis. This study seeks to identify the impact of geometric variables (i.e., height, post-spacing, sideslope ratio, and lateral offset) on median traffic barriers’ performance in crashes on interstate roads.MethodGeometric dimensions of over 110 miles median traffic barriers on interstate Wyoming roads were inventoried in a field survey between 2016 and 2018. Then, the traffic barrier data collected was combined with historical crash records, traffic volume data, road geometric characteristics, and weather condition data to provide a comprehensive dataset for the analysis. Finally, an ordered logit model with random-parameters was developed for the severity of traffic barrier crashes. Based on the results, traffic barrier’s height was found to impact crash severity.ResultsCrashes involving cable barriers with a height between 30″ and 42″ were less severe than other traffic barrier types, while concrete barriers with a height shorter than 32″ were more likely involved with severe injury crashes. As another important finding, the post-spacing of 6.1–6.3 ft. was identified as the least severe range in W-beam barriers.Practical applicationsThe results show that using flare barriers should reduce the number of crashes compared to parallel barriers.  相似文献   

18.
Introduction: The main objective of this research is to investigate the effect of traffic barrier geometric characteristics on crashes that occurred on non-interstate roads. Method: For this purpose, height, side-slope rate, post-spacing, and lateral offset of about 137 miles of traffic barriers were collected on non-interstate (state, federal aid primary, federal aid secondary, and federal aid urban) highways in Wyoming. In addition, crash reports recorded between 2008 and 2017 were added to the traffic barrier dataset. The safety performance of traffic barriers with regards to their geometric features was analyzed in terms of crash frequency and crash severity using random-parameters negative binomial, and random-parameters ordered logit models, respectively. Results: From the results, box beam barriers with a height of 27–29 inches were less likely to be associated with injury and fatal injury crashes compared to other barrier types. On the other hand, the likelihood of a severe injury crash was found to be higher for box beam barriers with a height taller than 31 inches. Both W-beam and box beam barriers with a post-spacing between 6.1 and 6.3 inches reduced the probability of severe injury crashes. In terms of the crash frequency, flare traffic barriers had a lower crash frequency compared to parallel traffic barriers. Non-interstate roads without longitudinal rumble strips were associated with a higher rate of traffic barrier crashes.  相似文献   

19.
According to official statistics, a large percentage of crashes in Portugal are reported on urban roads. For instance, from 2004 to 2007, about 70% of all injury accidents and 43% of the fatalities occurred inside urban agglomerations. This important safety problem has also been observed on the urban network of Lisbon. Understanding this significant problem, the Government of the Portuguese Republic via its research grant agency – The Foundation for Science and Technology – funded a project whose primary objective consists of developing tools that would help estimating the safety performance of various components of the urban highway system in Lisbon. This paper documents one component of the safety tools that were developed and describes the steps that were taken to develop predictive models for estimating the safety performance of signalized and unsignalized intersections of Lisbon. Several crash predictive models were developed using the Poisson-gamma modeling framework. Two types of models were estimated: flow-only and models with covariates. They were estimated using crash and other related data collected at 44 three-legged and 50 four-legged intersections for the years 2004–2007, inclusively. It was found that some highway geometric design characteristics were associated with the crashes occurring at urban three- and four-legged intersections in Lisbon.  相似文献   

20.
A great number of pedestrians are killed or injured in traffic crashes every year in the US. Vehicle crashes involving pedestrians are often more severe than other crashes because pedestrians are unprotected and are hence more likely to suffer injuries or death if struck by a motor vehicle. To improve pedestrian safety, a variety of treatments such as overhead flashing beacons, in-street crossing signs, in-roadway warning lights, and traffic calming measures have been used. One treatment, in-street yield-to-pedestrian channelizing devices (YTPCD), has been used in many states, including Pennsylvania, where approximately 10% of traffic crash fatalities are pedestrians each year.In an effort to improve pedestrian safety, the Pennsylvania Department of Transportation (PennDOT) has widely deployed YTPCD. This study examines the spillover (indirect) effects of such devices on motorist and pedestrian behavior. With data collected from eight sites that did not have but were in the vicinity of YTPCD implementations, analysis results show that such devices have significantly positive spillover effects on pedestrian safety at intersections, but they tend to have negative spillover effects at mid-block locations. Overall, the YTPCD appear to have a positive impact on changing motorist and pedestrian behavior, and merit consideration for future usage of this type of device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号