首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adsorption of chromate on mineral surfaces has received much attention due to its toxicity in natural systems. Spectroscopic studies have demonstrated that chromate forms inner-sphere complexes on variable-charge surfaces. However, in natural systems chromate has been observed to be fairly mobile, which has been explained by the presence of naturally occurring ligands competing with chromate for mineral surface sites. Silicic acid is a ubiquitous ligand in soil and water environments and also sorbs strongly to variable-charge surfaces. Yet little research has examined its influence on chromate adsorption to variable-charge surfaces such as goethite. This study examined the influence of silicic acid (0.10 and 1.0 mM) on the adsorption kinetics of chromate (0.05 and 0.10 mM) on goethite over a range of common soil pH values (4, 6, and 8). The rate and total quantity of chromate adsorption decreased in all the experiments except at a pH value of 4 and a chromate concentration of 0.05 mM. The inhibition of chromate adsorption ranged from 3.1% (pH = 4, Si = 0.10 mM, chromate = 0.10 mM) to 83.3% (pH = 8, Si = 1.0 mM, chromate = 0.05 mM). The rate of chromate adsorption decreased with an increase in pH and silicic acid concentration. This was attributed to a reduction in the surface potential of goethite on silicic acid adsorption as well as a competition for surface sites. The presence of naturally occurring ligands such as silicic acid may be responsible for the enhanced mobility of chromate in natural systems and demonstrates the importance of competitive adsorption for evaluating the mobility of trace elements.  相似文献   

2.
Emitted thermal infrared radiation (TIR, λ= 8 to 14 μm) can be used to measure surface water temperatures (top approximately 100 μm). This study evaluates the accuracy of stream (50 to 500 m wide) and lake (300 to 5,000 m wide) radiant temperatures (15 to 22°C) derived from airborne (MASTER, 5 to 15 m) and satellite (ASTER 90 m, Landsat ETM+ 60 m) TIR images. Applied atmospheric compensations changed water temperatures by ?0.2 to +2.0°C. Atmospheric compensation depended primarily on atmospheric water vapor and temperature, sensor viewing geometry, and water temperature. Agreement between multiple TIR bands (MASTER ‐ 10 bands, ASTER ‐ 5 bands) provided an independent check on recovered temperatures. Compensations improved agreement between image and in situ surface temperatures (from 2.0 to 1.1°C average deviation); however, compensations did not improve agreement between river image temperatures and loggers installed at the stream bed (from 0.6 to 1.6°C average deviation). Analysis of field temperatures suggests that vertical thermal stratification may have caused a systematic difference between instream gage temperatures and corrected image temperatures. As a result, agreement between image temperatures and instream temperatures did not imply that accurate TIR temperatures were recovered. Based on these analyses, practical accuracies for corrected TIR lake and stream surface temperatures are around 1°C.  相似文献   

3.
High emissions from soil fumigants increase the risk of detrimental impact on workers, bystanders, and the environment, and jeopardize future availability of fumigants. Efficient and cost-effective approaches to minimize emissions are needed. This study evaluated the potential of surface water application (or water seal) to reduce 1,3-dichloropropene (1,3-D) emissions from soil (Hanford sandy loam) columns. Treatments included dry soil (control), initial water application (8 mm of water just before fumigant application), initial plus a second water application (2.6 mm) at 12 h, initial plus two water applications (2.6 mm each time) at 12 and 24 h, standard high density polyethylene (HDPE) tarp, initial water application plus HDPE tarp, and virtually impermeable film (VIF) tarp. Emissions from the soil surface and distribution of 1,3-D in the soil-gas phase were monitored for 2 wk. Each water application abruptly reduced 1,3-D emission flux, which rebounded over a few hours. Peak emission rates were substantially reduced, but total emission reduction was small. Total fumigant emission was 51% of applied for the control, 46% for initial water application only, and 41% for the three intermittent water applications with the remaining water treatment intermediate. The HDPE tarp alone resulted in 45% emission, while initial water application plus HDPE tarp resulted in 38% emission. The most effective soil surface treatment was VIF tarp (10% emission). Surface water application can be as effective, and less expensive than, standard HDPE tarp. Frequent water application is required to substantially reduce emissions.  相似文献   

4.
Abstract: Urban impervious surfaces absorb and store thermal energy, particularly during warm summer months. During a rainfall/runoff event, thermal energy is transferred from the impervious surface to the runoff, causing it to become warmer. As this higher temperature runoff enters receiving waters, it can be harmful to coldwater habitat. In an urban watershed, impervious asphalt surfaces (roads, parking lots, and driveways) and pervious residential lawns comprise a significant portion of the watershed area. A paired asphalt‐turfgrass sod plot was constructed to compare the thermal runoff characteristics between asphalt and turfgrass sod surfaces, to identify meteorological variables that influence these thermal characteristics, and to evaluate evaporative heat loss for runoff from asphalt surfaces. Rainfall simulations were conducted during the summers of 2004 and 2005 under a range of climatic conditions. Asphalt surface temperatures immediately prior to rainfall simulations averaged 43.6°C and decreased an average of 12.3°C over 60 min as rain cooled the surface. In contrast, presimulation sod surface temperatures averaged only 23.3°C and increased an average of 1.3°C throughout the rainfall events. Heat transferred from the asphalt to the runoff resulted in initial asphalt runoff temperatures averaging 35.0°C that decreased by an average of 4.1°C at the end of the event. Sod runoff temperatures averaged only 25.5°C and remained fairly constant throughout the simulations. Multivariable regression equations were developed to predict (1) average asphalt surface temperature (R2 = 0.90) and average asphalt runoff temperature (R2 = 0.92) as a function of solar radiation, rain temperature, and wind speed, and (2) average sod surface temperature (R2 = 0.85) and average sod runoff temperature (R2 = 0.94) as a function of solar radiation, rain temperature, rain intensity, and wind speed. Based on a heat balance analysis, existing evaporation equations developed from studies on lakes were not adequate to predict evaporation from runoff on a heated impervious surface. The combined heat from the asphalt and sod plots was an average of 38% less than the total heat had the total area consisted solely of asphalt.  相似文献   

5.
Soil phosphorus (P) concentrations typically are greater in surface soils compared with subsurface soils. Surface soils have a greater chance to interact with runoff leading to P transport to streams. The thin surface layer where P concentrates is referred to as the mixing layer denoting where water and chemicals mix during transport. The objective of this study was to evaluate the effect of hydrologic flow paths on soluble reactive phosphorus (SRP) loss at two temperatures. Laboratory flumes were built to simulate infiltration, return flow, saturation excess, and interflow, and subsequent interaction with the mixing layer. The sandy loam soil in the flumes was kept at saturation throughout all experiments, so that biochemical effects were normalized. Flow through the flumes was maintained at 3.6 mm/h for 24 to 99 h (at 6 and 25 degrees C) with water entering and exiting the flumes at different ports (to simulate different flow paths) or as low intensity rainfall. Experiments were performed with and without an artificially created P-enriched surface layer (5 mm thick, total P increased from 1010 mg/kg in the original soil to 2310 mg/kg by addition of dissolved phosphate). Results indicated that (i) SRP release was greater in soil with a mixing layer than in soil without a mixing layer; (ii) SRP release was greater during experiments at 25 degrees C than at 6 degrees C; (iii) at 25 degrees C, SRP release was greatest when water traversed the mixing layer in the upward direction (i.e., in return flow), and by flow parallel to the mixing layer (i.e., surface runoff); and (iv) at 6 degrees C, SRP release in subsurface flow following rainfall was slightly greater than in return flow and infiltration. Our results confirmed the presence of a variable, temperature-dependent desorption process when runoff water interacted with the mixing layer. Our findings have important implications for how different water flow paths in and over the soil interact with P in the soil, and what the ultimate concentration will be in runoff and interflow.  相似文献   

6.
Abstract: This study used measured diurnal surface‐water cycles to estimate daily evapotranspiration (ET) and seepage for a seasonally flooded sinkhole wetland. Diurnal surface‐water cycles were classified into five categories based on the relationship between the surface‐water body and the surrounding ground‐water system (i.e., recharge/discharge). Only one class of diurnal cycles was found to be suitable for application of this method. This subset of diurnal cycles was used to estimate ET and seepage and the relative importance of each transfer process to the overall water budget. The method has limited utility for wetlands with erratic hydrologic regimes (e.g., wetlands in urban environments). This is due to violation of the critical assumption that the inflow/outflow rate remains constant throughout the day. For application to surface‐water systems, the method is typically applied with an assumed specific yield of 1.0. This assumption was found to be invalid for application to surface‐water systems with a noncylindrical pond geometry. An overestimation of ET by as much as 60% was found to occur under conditions of low pond stage and high water loss. The results demonstrate the high ET rates that can occur in isolated wetlands due to contrasting roughness and moisture conditions (oasis and clothesline effects). Estimated ET rates ranged from 4.1 to 18.7 mm/day during the growing season. Despite these large ET rates, seepage (recharge) was found to be the dominant water loss mechanism for the wetland.  相似文献   

7.
ABSTRACT: Water surface temperatures can be obtained from satellite thermal remote sensing. Landsat and other satellites sense emitted thermal infrared radiation on a regular basis over much of the earth's surface. Evaporation is accomplished by the net transport of mass from the water surface to the atmosphere. The evaporative transfer predominantly determines the water surface temperature. Hence, there should be good correlations between evaporation and surface temperatures. Previous investigations on Utah Lake with satellite-derived temperatures and pan- and model-derived evaporation values have produced good correlations. However, more study was required with additional satellite data and evaporation measurements for saltwater conditions. The applicability of this method for estimating evaporation on Utah's Great Salt Lake was of particular interest at this time because of the unprecedented rise of this terminal lake. Satellite thermal data and evaporation data from four different years were obtained for the Great Salt Lake and the surrounding region. More than 350 correlation and linear regression analyses were performed on the temperature and evaporation data. The lake salt concentrations were also factored into the analyses in several different ways. The correlation results were generally very good and a methodology for using satellite-derived water surface temperatures along with salt concentrations was developed to estimate evaporation.  相似文献   

8.
Emission of particulate matter (PM) is one of the major air quality concerns for large beef cattle feedlots. Effective treatments on the uncompacted soil and manure mixture of the pen surface may help in reducing PM emission from feedlots. A laboratory apparatus was developed for measuring dust-emission potential of cattle feedlot surfaces as affected by pen surface treatments. The apparatus was equipped with a simulated pen surface, four mock cattle hooves, and samplers for PM with equivalent aerodynamic diam. ≤ 10 μm (PM(10)). The simulated pen surface had a layer of dry, loose feedlot manure with a compacted soil layer underneath. Mock hooves were moved horizontally on the manure layer to simulate horizontal action of cattle hooves on the pen surface. High-volume PM samplers were used to collect emitted dust. Effects of hoof speed, depth of penetration, and surface treatments with independent candidate materials (i.e., sawdust, wheat straw, hay, rubber mulch, and surface water application) on PM(10) emission potential of the manure layer were investigated. Our laboratory study showed PM(10) emission potential increased with increasing depth of penetration and hoof speed. Of the surface treatments evaluated, application of water (6.4 mm) and hay (723 g m(-2)) exhibited the greatest percentage reduction in PM(10) emission potential (69 and 77%, respectively) compared with the untreated manure layer. This study indicated application of hay or other mulch materials on the pen surface might be good alternative methods to control dust emission from cattle feedlots.  相似文献   

9.
Abstract: The summertime heating of runoff in urban areas is recognized as a common and consistent urban climatological phenomenon. In this study, a simple thermal urban runoff model (TURM) is presented for the net energy flux at the impervious surfaces of urban areas to account for the heat transferred to runoff. The first step in developing TURM consists of calculating the various factors that control how urban impervious areas absorb heat and transfer it to moving water on the surface. The runoff temperature is determined based on the interactions of the physical characteristics of the impervious areas, the weather, and the heat transfer between the moving film of runoff and the impervious surface common in urban areas. Key surface and weather factors that affect runoff temperature predictions are type of impervious surface, air temperature, humidity, solar radiation before and during rain, rainfall intensity, and rainfall temperature. Runoff from pervious areas is considered separately and estimated using the Green‐Ampt Mein‐Larson rainfall excess method. Pervious runoff temperature is estimated as the rainfall temperature. Field measurements indicate that wet bulb temperature can be used as a surrogate for rainfall temperature and that runoff temperatures from sod average just 2°C higher than rainfall temperatures. Differences between measured and predicted impervious runoff temperature average approximately 2°C, indicating that TURM is a useful tool for determining runoff temperatures for typical urban areas.  相似文献   

10.
通过对秦皇岛草面、沥青表面、水泥表面和裸露地表4种表面温度观测的数据,分析了不同地表表面温度在夏季不同天气条件下温度的变化规律与差异,阐述了草地在城市气候环境调节中的作用。统计结果表明,夏季各表面温度从高到低的次序为:沥青、水泥、裸土和草面温度。在不同的地表面中,夜间基本均以草面温度最低。各表面的最低温度出现在日出前,各表面的平均最高温度出现在12~14时之间。在夏季晴朗的白天,中午各表面温度达到一日中的最高。草面的温度远低于沥青和水泥表面的温度,白天平均温度差异达到10.0℃左右。  相似文献   

11.
Abstract: Efficient water resource management is one of the most important policy issues facing agriculture in Hawaii in the years ahead. Soil water sensors, multisensor capacitance probes (MCP), have been successfully used for different water management projects. These MCPs monitor water content at multiple depths and at various locations in real-time. The objectives of this study were to determine the effect of water content on field soil bulk density of Wahiawa silty clay tropical soil; measure field saturated hydraulic conductivity of this tropical soil: calibrate MCP system for this soil: and monitor and evaluate real-time soil water content variations under a tomato crop using the calibrated MCP system. Sensor calibration was conducted under laboratory conditions. Soil bulk density at different water contents and saturated hydraulic conductivity were measured on the field. Bulk density increased with increasing water content: there was a 30 percent bulk density increase as a result of 0.25 cm3 cm-3 water content variation. Compared with the manufacturer's calibration, site specific laboratory calibration of MCP gave a more accurate determination of soil water. Field determined saturated hydraulic conductivity was higher than laboratory determined values reported in the literature for the same soil type. Real-time soil water content monitoring within the root zone showed substantial variations due to water input (irrigation and rainfall) and water output (evapotranspiration and deep percolations). However, water content variations were much further reduced in the soil layer below the root zone.  相似文献   

12.
Near-channel hill-country wetlands draining steep pastoral land in New Zealand exhibit high levels of fecal contamination at a range of flows. This contamination is attributed to both the transport of bacteria into a wetland from the surrounding catchment and the direct excretion of fecal material onto wetlands by grazing cattle. E. coli concentrations observed at low to moderate flow at 20 sites varied between 0.5 x 10(1) and 2 x 10(4) most probable number (MPN) 100 mL(-1). High flow concentrations measured at two wetlands ranged up to 6 x 10(6) MPN 100 mL(-1) and yielded storm period bacterial loads of between 1 x 10(6) and 3 x 10(10) MPN per event. Given the disproportionately large fraction of surface and subsurface flow from the catchment that passes through the wetlands, these yields represent a large proportion of the total loss of bacteria from steep grazed hillsides, across a range of storm events. Cattle are attracted to the smaller, shallower wetlands for grazing in both summer and winter. Excluding stock from shallow wetlands may therefore yield improvements in bacterial water quality, although accurately quantifying this improvement is difficult without long-term studies. Cattle are not attracted to larger, deeper wetlands, presumably for fear of entrapment, and fencing them is unlikely to realize significant improvements in bacterial water quality. A statistical model incorporating solar radiation and flow explains 87% of the variance in E. coli concentrations across five monitored rainfall events. A positive correlation was found between solar radiation and E. coli concentration. The study was conducted in winter when clear, sunny days are relatively cold. Solar radiation on these days appears to be too weak to promote die-off but the colder temperatures aid survival.  相似文献   

13.
Managed drainage ditches are common in the midwestern United States. These ditches are designed to remove water from fields as quickly as possible, and sediment buildup necessitates dredging, to ensure adequate water removal. This laboratory study was conducted to determine the impact of ditch dredging on soluble phosphorus (P) transport. Ditch sediments were collected from a drainage ditch in northeastern Indiana immediately before and after dredging. The sediments were placed in a stream simulator, and stream water was loaded with 0.55 mM P for 5 d (adsorption experiment). Water was then removed, and "clean" water (no P added) was used for a desorption experiment, lasting 1 d. During the adsorption experiment, pre-dredged sediments were able to remove P from the water column quicker, and P concentrations 120 h after introduction of high P water were lower for the pre-dredged sediments (0.075 mM P) than the dredged sediments (0.111 mM P). During the desorption experiment, P was released to the water column slower in the pre-dredged treatment than the dredged treatment (instantaneous flux at t = 0 was 0.205 microM P h(-1) for pre-dredged and 0.488 microM P h(-1) for dredged). This occurred despite higher Mehlich 3-extractable P in the pre-dredged sediments than the dredged sediments. Equilibrium phosphorus concentrations (EPCo) were lower in the pre-dredged sediments during both adsorption and desorption experiments. Transport of soluble P immediately after dredging will likely increase in drainage ditches; however, dredging is a necessary management tool to ensure adequate discharge of water from surrounding fields.  相似文献   

14.
Arp, C.D., B.M. Jones, M. Whitman, A. Larsen, and F.E. Urban, 2010. Lake Temperature and Ice Cover Regimes in the Alaskan Subarctic and Arctic: Integrated Monitoring, Remote Sensing, and Modeling. Journal of the American Water Resources Association (JAWRA) 46(4): 777-791. DOI: 10.1111/j.1752-1688.2010.00451.x Abstract: Lake surface regimes are fundamental attributes of lake ecosystems and their interaction with the land and atmosphere. High latitudes may be particularly sensitive to climate change, however, adequate baselines for these lakes are often lacking. In this study, we couple monitoring, remote sensing, and modeling techniques to generate baseline datasets of lake surface temperature and ice cover in the Alaskan Subarctic and Arctic. No detectable trends were observed during this study period, but a number of interesting patterns were noted among lakes and between regions. The largest Arctic lake was relatively unresponsive to air temperature, while the largest Subarctic lake was very responsive likely because it is fed by glacial runoff. Mean late summer water temperatures were higher than air temperatures with differences ranging from 1.7 to 5.4°C in Subarctic lakes and from 2.4 to 3.2°C in Arctic lakes. The warmest mean summer water temperature in both regions was in 2004, with the exception of Subarctic glacially fed lake that was highest in 2005. Ice-out timing had high coherence within regions and years, typically occurring in late May in Subarctic and in early-July in Arctic lakes. Ice-on timing was more dependent on lake size and depth, often varying among lakes within a region. Such analyses provide an important baseline of lake surface regimes at a time when there is increasing interest in high-latitude water ecosystems and resources during an uncertain climate future.  相似文献   

15.
Basic research on the corrosive effect of flue gases has been performed at the BAM Federal Institute for Materials Research and Testing (Germany). Conditions at both high and low temperatures were simulated in specially designed experiments. Carburization occured in flue gases with high CO2 content and temperatures higher than 500 °C. In SO2 containing flue gases sulphur was detected in the oxide scale. At lower temperatures no corrosion was observed when gases with low humidity were investigated. Humidity higher than 1500 ppm was corrosive and all steels with Cr contents lower than 12% revealed corroded surfaces. At low temperatures below 10 °C a mixture of sulphuric and nitric acid condensed on metal surfaces. Acid condensation caused severe corrosion. Humidity, CO2, O2, and SO2 contents are the important factors determining corrosion. Below 300 °C acid condensation is the primary reason for corrosion. Low humidity and low temperatures are conditions which can be expected in the CO2 separation and treatment process. This work includes major conditions of the flue gas and CO2 stream in CCS plants and CCS technology.  相似文献   

16.
北京作为我国的首都、环境保护的首善之区,在环境问题上应该,也必须是安全的。但实际上,北京大气污染、水体污染日益加剧,水资源紧张,环境安全形势严峻。本文根据2005—2014年十年环境污染统计数据,运用层次分析法、灰色聚类分析法对北京市城市环境安全进行了评价分析,结果表明,北京市城市环境安全度为6.3~6.89,属于较安全级别。十年来北京市环境安全状况呈好转趋势,环境安全度最低值出现在2006年,最高值出现在2011年,增幅9%。地表水的氨氮、BOD、高锰酸盐指数及大气污染中的PM10污染相对严重。PM10安全度指数2005—2007年偏低,由于奥运减排措施的持续作用及沙尘影响减弱,2006—2013年安全度逐年增高,2014年安全度略有下降,但整体呈好转趋势。北京市地表水污染仍为有机污染型,2005—2014年的十年间,通过结构减排、工程减排、监管减排等措施,地表水有机污染得到很大改善,各项污染物浓度总体呈下降趋势。总体而言,环境空气质量仍未达标,水环境污染仍较突出,应针对评价结果加大相应的环境治理措施,确保首都环境安全。  相似文献   

17.
张红 《四川环境》2022,(1):126-135
水资源匮乏成为当前世界改善沙漠生态环境面临的凸出问题之一,合理利用企业尾水成为缓解甚至实现改善沙漠环境的一种尝试。研究以群克消纳地沙漠尾水处理工程为例,提出一种针对尾水沙漠综合利用的新型技术模式。通过研究分析尾水对周边水域、土壤以及绿地植物、脊椎动物、水体生物的影响,结合科学的评价方法,对沙漠尾水综合利用进行评价,得出以下结论:群克消纳地尾水沙漠综合利用的规范化技术新型技术工程有利于周边生态环境变好,对动植物、水体、土壤等没有不良影响;水域边上植被盖度增加,对周边活动沙丘固定起到初步积极作用,同时,也为周边动植物提供栖息场所以及生长发育的环境基础;区域生态环境恢复良好,形成了与区域自然水体类似的生态系统结构,群克消纳地尾水处理工程形成的稳定的生态系统表明,在沙漠中采用无害、生态性的尾水处理技术是可行的。  相似文献   

18.
Anticipating changes in hydrologic variables is essential for making socioeconomic water resource decisions. This study aims to assess the potential impact of land use and climate change on the hydrologic processes of a primarily rain‐fed, agriculturally based watershed in Missouri. A detailed evaluation was performed using the Soil and Water Assessment Tool for the near future (2020–2039) and mid‐century (2040–2059). Land use scenarios were mapped using the Conversion of Land Use and its Effects model. Ensemble results, based on 19 climate models, indicated a temperature increase of about 1.0°C in near future and 2.0°C in mid‐century. Combined climate and land use change scenarios showed distinct annual and seasonal hydrologic variations. Annual precipitation was projected to increase from 6% to 7%, which resulted in 14% more spring days with soil water content equal to or exceeding field capacity in mid‐century. However, summer precipitation was projected to decrease, a critical factor for crop growth. Higher temperatures led to increased potential evapotranspiration during the growing season. Combined with changes in precipitation patterns, this resulted in an increased need for irrigation by 38 mm representing a 10% increase in total irrigation water use. Analysis from multiple land use scenarios indicated converting agriculture to forest land can potentially mitigate the effects of climate change on streamflow, thus ensuring future water availability.  相似文献   

19.
Overland and shallow subsurface hydrologic transport of pathogenic Cryptosporidium parvum oocysts from cattle feces into surface drinking water supplies is a major concern on annual grasslands in California's central and southern Sierra Nevada foothills. Soil boxes (0.5 m wide x 1.1 m long x 0.3 m deep) were used to evaluate the ability of grass vegetated buffer strips to retain 2 x 10(8) spiked C. parvum oocysts in 200-g fecal deposits during simulated rainfall intensities of 30 to 47.5 mm/h over 2 h. Buffers were comprised of Ahwahnee sandy loam (coarse-loamy, mixed, active, thermic Mollic Haploxeralfs; 78:18:4 sand to silt to clay ratio; dry bulk density = 1.4 g/cm(3)) set at 5 to 20% land slope, and >/=95% grass cover (grass stubble height = 10 cm; biomass = 900 kg/ha dry weight). Total number of oocysts discharged from each soil box (combined overland and subsurface flow) during the 120-min simulation ranged from 1.5 x 10(6) to 23.9 x 10(6) oocysts. Observed overall mean log(10) reduction of total C. parvum flux per meter of vegetated buffer was 1.44, 1.19, and 1.18 for buffers at 5, 12, and 20% land slope, respectively. Rainfall application rate (mm/h) was strongly associated with oocyst flux from these vegetated buffers, resulting in a decrease of 2 to 4% in the log(10) reduction per meter buffer for every additional mm/h applied to the soil box. These results support the use of strategically placed vegetated buffers as one of several management strategies that can reduce the risk of waterborne C. parvum attributable to extensive cattle grazing on annual grassland watersheds.  相似文献   

20.
Rainfall simulation experiments were conducted on annual grassland and coastal sage scrub hillslopes to determine the quantities of C and N removed by surface runoff in sediment and solution. Undisturbed coastal sage scrub soils have very high infiltration capacities (> 140 mm h(-1)), preventing the generation of surface runoff. Trampling disturbance to the sage scrub plots dramatically reduced infiltration capacities, increasing the potential for surface runoff and associated nutrient loss. Infiltration capacities in the grassland plots (30-50 mm h(-1)) were lower than in the sage scrub plots. Loss rates of dissolved C and N in surface runoff from grasslands were 0.5 and 0.025 mg m(-2) s(-1) respectively, with organic N accounting for more than 50% of the dissolved N. Total dissolved losses with simulated rainfall were higher than losses in simulations with just surface runoff, demonstrating the importance of raindrop impact in transferring solutes into the flow. Experimental data were incorporated into a numerical model of runoff and sediment transport to estimate hillslope-scale sediment-bound nutrient losses from grasslands. According to the model results, sediment-bound nutrient losses are sensitive to the density of vegetation cover and rainfall intensity. The model estimates annual losses in surface runoff of 0.2 and 0.02 g m(-2) for sediment-hound C and N, respectively. The results of this study suggest that conversion of coastal sage scrub to annual grasslands increases hillslope nutrient losses and may affect stream water quality in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号