首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Environmental Chemistry Letters - Climate change is impacting agriculture through a rise in greenhouse gases, higher temperatures and extreme precipitation patterns, with adverse consequences such...  相似文献   

2.
Although half of the administrative units in China are said to have implemented their local Agenda 21, the promotion of sustainable communities is not pervasive. In this paper, we adopted a relatively untried mode of analysis and a socio-economic context to illustrate the potentials and failures of China's grassroots local government bodies in achieving sustainable waste management. Our study shows that, among the three main functions of sustainable waste management (ensuring environmental hygiene, provision of recycling logistics and changing the consumption pattern of the local community) for local governments, grassroots local government bodies in mainland China are only able to do the minimum, i.e. ensuring environmental hygiene and handling complaints. One of the reasons for the failure is that, despite the emphasis on capacity building in China's Agenda 21, the reality is that no action is taken to empower grassroots local government. Despite the high profile accorded by the Chinese central government to motivating local governments to formulate their own Agenda 21, local sustainability and waste management performance have little relevance to the appraisal systems of these government agents.  相似文献   

3.
Environmental Chemistry Letters - Climate change is a major threat already causing system damage to urban and natural systems, and inducing global economic losses of over $500 billion. These issues...  相似文献   

4.

The global transition to a circular economy calls for research and development on technologies facilitating sustainable resource recovery from wastes and by-products. Metal-bearing materials, including electronic wastes, tailings, and metallurgical by-products, are increasingly viewed as valuable resources, with some possessing comparable or superior quality to natural ores. Bioleaching, an eco-friendly and cost-effective alternative to conventional hydrometallurgical and pyrometallurgical methods, uses microorganisms and their metabolites to extract metals from unwanted metal-bearing materials. The performance of bioleaching is influenced by pH, solid concentration, energy source, agitation rate, irrigation rate, aeration rate, and inoculum concentration. Optimizing these parameters improves yields and encourages the wider application of bioleaching. Here, we review the microbial diversity and specific mechanisms of bioleaching for metal recovery. We describe the current operations and approaches of bioleaching at various scales and summarise the influence of a broad range of operational parameters. Finally, we address the primary challenges in scaling up bioleaching applications and propose an optimisation strategy for future bioleaching research.

  相似文献   

5.
Agricultural productivity growth is vital for economic and food security outcomes which are threatened by climate change. In response, governments and development agencies are encouraging the adoption of ‘climate-smart’ agricultural technologies, such as conservation agriculture (CA). However, there is little rigorous evidence that demonstrates the effect of CA on production or climate resilience, and what evidence exists is hampered by selection bias. Using panel data from Zimbabwe, we test how CA performs during extreme rainfall events - both shortfalls and surpluses. We control for the endogenous adoption decision and find that use of CA in years of average rainfall results in no yield gains, and in some cases yield loses. However, CA is effective in mitigating the negative impacts of deviations in rainfall. We conclude that the lower yields during normal rainfall seasons may be a proximate factor in low uptake of CA. Policy should focus promotion of CA on these climate resilience benefits.  相似文献   

6.
Climate change shifts the distributions of a set of climatic variables, including temperature, precipitation, humidity, wind speed, sunshine duration, and evaporation. This paper explores the importance of those additional climatic variables other than temperature and precipitation. Using the county-level agricultural data from 1980 to 2010 in China, we find that those additional climatic variables, especially humidity and wind speed, are critical for crop growth. Therefore, omitting those variables is likely to bias the predicted impacts of climate change on crop yields. In particular, omitting humidity tends to overpredict the cost of climate change on crop yields, while ignoring wind speed is likely to underpredict the effect. Our preferred specification indicates that climate change is likely to decrease the yields of rice, wheat, and corn in China by 36.25%, 18.26%, and 45.10%, respectively, by the end of this century.  相似文献   

7.
8.

The global amount of solid waste has dramatically increased as a result of rapid population growth, accelerated urbanization, agricultural demand, and industrial development. The world's population is expected to reach 8.5 billion by 2030, while solid waste production will reach 2.59 billion tons. This will deteriorate the already strained environment and climate situation. Consequently, there is an urgent need for methods to recycle solid waste. Here, we review recent technologies to treat solid waste, and we assess the economic feasibility of transforming waste into energy. We focus on municipal, agricultural, and industrial waste. We found that methane captured from landfilled-municipal solid waste in Delhi could supply 8–18 million houses with electricity and generate 7140 gigawatt-hour, with a prospected potential of 31,346 and 77,748 gigawatt-hour by 2030 and 2060, respectively. Valorization of agricultural solid waste and food waste by anaerobic digestion systems could replace 61.46% of natural gas and 38.54% of coal use in the United Kingdom, and could reduce land use of 1.8 million hectares if provided as animal feeds. We also estimated a levelized cost of landfill solid and anaerobic digestion waste-to-energy technologies of $0.04/kilowatt-hour and $0.07/kilowatt-hour, with a payback time of 0.73–1.86 years and 1.17–2.37 years, respectively. Nonetheless, current landfill waste treatment methods are still inefficient, in particular for treating food waste containing over 60% water.

  相似文献   

9.
The food and agriculture sector controls the economic growth of a developing country. The food industries have practices of growing crops, raising livestock and sea foods, food processing and packaging, regulating production and distribution with quality and safety. The process control and monitoring quality are crucial steps. Here we review nanosensors and nanobiosensors as alternative of classical quantification methods. Nanoscale dimensions of metal nanoparticles, metal nanoclusters, metal oxide nanoparticles, metal and carbon quantum dots, graphene, carbon nanotubes, and nanocomposites expand the sensitivity by signal amplification and integrate several novel transduction principles such as enhanced electrochemical, optical, Raman, enhanced catalytic activity, and superparamagnetic properties into the nanosensors. The electrochemical nanosensors, optical nanosensors, electronic nose and electronic tongue, nanobarcode technology, and wireless nanosensors have revolutionized the sensing in food and agriculture sectors with multiplex and real-time sensing capabilities. Despite previous success stories of the remunerative health sector, the approaches are transferred subsequently to food and agriculture sector; with potential application in detection of food contaminants such as preservatives, antibiotics, heavy metal ions, toxins, microbial load, and pathogens along with the rapid monitoring of temperature, traceability, humidity, gas, and aroma of the food stuff.  相似文献   

10.
Numerous studies have begun to tackle the social and cultural dimensions of perceiving and framing climate change. Scholars from geography and environmental psychology in particular have started to highlight the importance of so-called place-based approaches to studying regional and local framings of climate change. This paper stands in this tradition. It reports on findings derived from a nationwide survey of perceptions of and reactions to extreme weather events and interviews conducted with inhabitants of three islands in the coastal region of North Frisia (Germany). Coastal dwellers understand climate change through the lens of local and regional experiences of meteorological phenomena, seasonal changes, knowledge of the sea, and changes in local flora and fauna. Our detailed ecolinguistic analysis revealed six prevailing conceptual metaphors: Climate change is an enemy, preventing climate change is fight/war, climate change is punishment for human sins, climate change is overheating/heat, climate change is hot air/hoax and climate change is eco-dictatorship. These metaphors were used to make sense of climate change at the regional level and provide insights into place-based social and cultural conceptualisations of climate change. An understanding of these meanings should feed into developing more grounded climate change adaptation and mitigation strategies in coastal regions.  相似文献   

11.
Environmental and Ecological Statistics - This paper evaluates behavioral adaptation models to climate change using South American agricultural data. This paper finds that the Ricardian model with...  相似文献   

12.
With the rise in the global population, the demand for increased supply of food has motivated scientists and engineers to design new methods to boost agricultural production. With limited availability of land and water resources, growth in agriculture can be achieved only by increasing productivity through good agronomy and supporting it with an effective use of modern technology. Advanced agronomical methods lay stress not only on boosting agricultural produce through use of more effective fertilizers and pesticides, but also on the hygienic storage of agricultural produce. The detrimental effects of modern agricultural methods on the ecosystem have raised serious concerns amongst environmentalists. The widespread use of persistent pesticides globally over the last six decades has contaminated groundwater and soil, resulting in diseases and hardships in non-target species such as humans and animals. The first step in the removal of disease causing microbes from food products or harmful contaminants from soil and groundwater is the effective detection of these damaging elements. Nanotechnology offers a lot of promise in the area of pollution sensing and prevention, by exploiting novel properties of nanomaterials. Nanotechnology can augment agricultural production and boost food processing industry through applications of these unique properties. Nanosensors are capable of detecting microbes, humidity and toxic pollutants at very minute levels. Organic pesticides and industrial pollutants can be degraded into harmless and often useful components, through a process called photocatalysis using metal oxide semiconductor nanostructures. Nanotechnology is gradually moving out from the experimental into the practical regime and is making its presence felt in agriculture and the food processing industry. Here we review the contributions of nanotechnology to the sensing and degradation of pollutants for improved agricultural production with sustainable environmental protection.  相似文献   

13.
14.
Understanding how vulnerable forest ecosystems are to climate change is a key requirement if sustainable forest management is to be achieved. Modelling the response of species in their regeneration niche to phenological and biophysical processes that are directly influenced by climate is one method for achieving this understanding. A model was developed to investigate species resilience and vulnerability to climate change within its fundamental-regeneration niche. The utility of the developed model, tree and climate assessment (TACA), was tested within the interior Douglas-fir ecosystem in south-central British Columbia. TACA modelled the current potential tree species composition of the ecosystem with high accuracy and modelled significant responses amongst tree species to climate change. The response of individual species suggests that the studied ecosystem could transition to a new ecosystem over the next 100 years. TACA showed that it can be an effective tool for identifying species resilience and vulnerability to changes in climate within the most sensitive stage of development, the regeneration phase. The TACA model was able to identify the degree of change in phenological and biophysical variables that control tree establishment, growth and persistence. The response to changes in one or more of these variables resulted in changes in the climatic suitability of the ecosystem for species and enabled a measure of vulnerability to be quantified. TACA could be useful to forest managers as a decision support tool for adaptation actions and by researchers interested in modelling stand dynamics under climate change.  相似文献   

15.
High population rise and climate changes are increasing issues of agricultural production and food safety. Nanotechnology is finding revolutionary applications to improve agricultural and food systems, notably for better crop production and food preservation. Here we review research, industrial and patent trends of nanoscience in food and agriculture. In a literature survey, we found 44.6% publications in the nano-food research area during the years 2013–2015 and 59.09% publications in the nano-agriculture research area during 2012–2015. USA is leading in the development of nanotechnology firms with a maximum share of 75.5% of the total firms, followed by Germany and France with 8.10 and 4.74%, respectively. USA is leading in the nano-food research with 22 granted patents, whereas China is placed first in nano-agriculture research with 28 granted patents during assessment years 2011–2015. Nano-food research focused mainly on nano-food packaging with 76.84% contributions, whereas in nano-agriculture research, focus has been on nano-fertilizers with 90% contributions. Germany, France, Korea, Italy, Czech Republic, Slovenia and Slovak republic have more than 20% of dedicated nanotechnology firms. A growth of about 45% in nano-food patents has been observed for USA during 2011–2015, and China is leading in the nano-agriculture patents with an increase of 60.7% during 2012–2015.  相似文献   

16.
Environmental Chemistry Letters - Conventional treatments of food waste such as incineration, landfilling, and composting require large land areas and induce contamination in air, soil,...  相似文献   

17.
Long-term ecological research has become a cornerstone of the scientific endeavour to better understand ecosystem responses to environmental change. This paper provides a perspective on how such research could be advanced. It emphasizes that a profound understanding of the mechanisms underlying these responses requires that records of ecologic processes be not only sufficiently long, but also collected at an appropriate temporal resolution. We base our argument on an overview of studies of climate impacts in limnic and marine ecosystems, suggesting that lakes and oceans respond to (short-term) weather conditions during critical time windows in the year. The observed response patterns are often time-lagged or driven by the crossing of thresholds in weather-related variables (such as water temperature and thermal stratification intensity). It becomes clear from the previous studies that average annual, seasonal or monthly climate data often fall short of characterizing the thermal dynamics that most organisms respond to. To illustrate such literature-based evidence using a concrete example, we compare 2?years of water temperature data from Müggelsee (Berlin, Germany) at multiple temporal scales (from hours to years). This comparison underlines the pitfalls of analysing data at resolutions not high enough to detect critical differences in environmental forcing. Current science initiatives that aim at improving the temporal resolution of long-term observatory data in aquatic systems will help to identify adequate timescales of analysis necessary for the understanding of ecosystem responses to climate change.  相似文献   

18.
To understand the consequences of human accelerated environmental change, it is important to document the effects on natural populations of an increasing frequency of extreme climatic events. In stream ecosystems, recent climate change has resulted in extreme variation in both thermal and hydrological regimes. From 2001 to 2004, a severe drought in western United States corresponded with earlier emergence of the adult stage of the high-altitude stream mayfly, Baetis bicaudatus. Using a long-term database from a western Colorado stream, the peak emergence date of this mayfly population was predicted by both the magnitude and date of peak stream flow, and by the mean daily water temperature, suggesting that Baetis may respond to declining stream flow or increasing water temperature as proximate cues for early metamorphosis. However, in a one-year survey of multiple streams from the same drainage basin, only water temperature predicted spatial variation in the onset of emergence of this mayfly. To decouple the effects of temperature and flow, we separately manipulated these factors in flow-through microcosms and measured the timing of B. bicaudatus metamorphosis to the adult stage. Mayflies emerged sooner in a warmed-water treatment than an ambient-water treatment; but reducing flow did not accelerate the onset of mayfly emergence. Nonetheless, using warming temperatures to cue metamorphosis enables mayflies to time their emergence during the descending limb of the hydrograph when oviposition sites (protruding rocks) are becoming available. We speculate that large-scale climate changes involving warming and stream drying could cause significant shifts in the timing of mayfly metamorphosis, thereby having negative effects on populations that play an important role in stream ecosystems.  相似文献   

19.
Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate‐induced species’ movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species’ movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving‐window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species’ dispersal capabilities. We compared connectivity maps generated with our climate‐change‐informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present‐day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号