首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yuan  Junjie  Song  Xueyi  Yang  Xinyue  Yang  Chen  Wang  Yinxi  Deng  Gaofeng  Wang  Zhichao  Gao  Jubao 《Environmental Chemistry Letters》2023,21(5):2559-2581
Environmental Chemistry Letters - Global warming could be slowed down by removing carbon dioxide from the atmosphere, yet classical methods for carbon dioxide capture are fewly adapted to indoor...  相似文献   

2.
Environmental Chemistry Letters - The Ukraine war has strongly accentuated the ongoing energy and environmental issues, thus requiring a fast development of alternative and more local fuels. For...  相似文献   

3.

The adverse effects of climate change calls for the rapid transformation of manufacturing processes to decrease the emissions of carbon dioxide. In particular, a lower carbon footprint can be achieved by capturing carbon dioxide at the site of emission. Here we review the use of industrial effluents, waste and residues to capture carbon dioxide. Waste include steelmaking slag, municipal solid waste incinerator ashes, combustion fly ash, black liquor, paper mill waste, mining waste, cement waste, construction and demolition waste, waste from the organic industry, and flue gas desulfurization gypsum waste. Capture capacities range from 2 to 800 kg of carbon dioxide per ton of waste, depending on processes, waste type and conditions. Cement waste and flue gas desulfurization gypsum waste show the highest capture capacity per ton of waste.

  相似文献   

4.
Environmental Chemistry Letters - Global warming is induced partly by rising atmospheric carbon dioxide levels, calling for sustainable methods to sequester carbon. Here we review carbon capture,...  相似文献   

5.
Ai  Ling  Ng  Sue-Faye  Ong  Wee-Jun 《Environmental Chemistry Letters》2022,20(6):3555-3612
Environmental Chemistry Letters - Climate change damage induced by growing carbon dioxide (CO2) emissions has rapidly fostered research on capturing, utilizing, and converting CO2 into valuable C1...  相似文献   

6.
This is the first case applying 2-haloethylamine to CO2 capture. The prospect of global warming and the urgent need to reduce atmospheric concentration of carbon dioxide has prompted actions at many levels. The conventional capture of carbon dioxide is predominantly based on chemical absorption using ethanolamine. Recent developments of carbon dioxide capture focus on new materials, such as ionic liquids, zeolites, membranes, carbonaceous absorbents, and metal–organic frameworks. However, no unique solution exists currently to solve the problem of carbon dioxide capture. In order to examine the efficiency of 2-chloroethylamine as an absorbent of CO2, we treated an aqueous solution of 2-chloroethylamine hydrochloride with CO2 in the presence of an alkali, e.g., NaOH, under ambient conditions. The absorption was complete within 30 min, seemingly following first-order reaction kinetics. Furthermore, we succeeded in capturing CO2 from ambient air using 2-chloroethanolamine. The efficiency of 2-chloroethylamine as an absorbent of CO2 could be attributed to the production of stable 2-oxazolidinone, therefore, this reaction is favored thermodynamically. Compared with previously reported absorbents, this novel system is capable of capturing CO2 with an extremely high efficiency of 1 mol per mol absorbent under ambient conditions, even from the atmosphere. This potential method could be used to capture CO2 particularly from small, mobile, or low-concentration emission sources.  相似文献   

7.
Luo  Dan  Wang  Luyao  Nan  Hongyan  Cao  Yijun  Wang  Hui  Kumar  Thakur Vijay  Wang  Chongqing 《Environmental Chemistry Letters》2023,21(1):497-524
Environmental Chemistry Letters - Phosphorus is essential element for agricultural production, yet phosphorus ore resources are non-renewable and become depleted. Moreover, phosphate release from...  相似文献   

8.
Environmental Chemistry Letters - Global warming may be slowed down by carbon capture and storage systems that allow to sequester carbon dioxide from large fixed point sources such as power plants...  相似文献   

9.
Environmental Chemistry Letters - Biogas is a renewable fuel produced from modern biomass, yet biogas contains traces of hydrogen sulfide, a toxic compound, that must be removed before biogas...  相似文献   

10.
Long-term storage of carbon dioxide (CO2) and other forms of carbon in non-atmospheric reservoirs is called carbon sequestration. Selective anthropogenic enrichment of the atmospheric carbon pool is causing dire environmental problems, thereby necessitating remediation by mitigation. Algae possess efficient carbon concentrating mechanisms and consequently high photosynthetic rates which make them suitable candidates for biosequestration of CO2. Globally, nearly half of the atmospheric oxygen is generated by algal photosynthesis despite the fact that algae account for less than 1% of photosynthetic biomass. In water bodies, algae are responsible for creating the ‘biological pump’ that transports carbon from the upper sunlit waters to the depth below. A diverse array of photoautotrophs ranging from prokaryotic cyanobacteria to eukaryotic algae such as Chlorophytes, and even protists like euglenoids, contribute to this ‘biological pump’. It operates in a variety of aquatic ecosystems ranging from small freshwater ponds to the oceans where it has been most extensively studied. Two separate but intricately linked processes constitute this ‘biological pump’, viz. the ‘organic carbon pump’ and the ‘calcium carbonate pump’. The present review discusses the natural CO2 sequestration processes carried out by algae and cyanobacteria in their native ecosystems.  相似文献   

11.
Environmental Chemistry Letters - Since its discovery in the late eighteenth century and mass production in the early twentieth century, titanium dioxide has been used in a wide range of...  相似文献   

12.
Environmental Chemistry Letters - Global warming is partly caused by massive emissions of carbon dioxide (CO2), a greenhouse gas, in the atmosphere by industrial and other human activities....  相似文献   

13.
Zhao  Lulu  Wang  Jinguo  Yang  Weiyou  Hou  Huilin  Yan  Ruifang 《Environmental Chemistry Letters》2023,21(3):1499-1513
Environmental Chemistry Letters - The photocatalytic transformation of carbon dioxide into fuels is viewed as a promising solution to lessen global warming and to enter a circular economy, yet this...  相似文献   

14.
A promising microalgal strain isolated from fresh water, which can grow both autotrophically on inorganic carbon under lighting and heterotrophically on organic carbon without lighting, was identified as Chlorella sp. USTB-01 with the phylogenetic analysis based on 18S ribosomal ribonucleic acid (rRNA) gene sequences. In the heterotrophic batch culture, more than 20.0 g·L?1 of cell dry weight concentration (DWC) of Chlorella sp. USTB-01 was obtained at day 5, and which was used directly to seed the autotrophic culture. A novel fermentor-helical combined photobioreactor was established and used to cultivate Chlorella sp. USTB-01 for the fixation of carbon dioxide (CO2). It showed that the autotrophic growth of Chlorella sp. USTB-01 in the combined photobioreactor was more effective than that in the fermentor alone and the maximum DWC of 2.5 g·L?1 was obtained at day 6. The highest CO2 fixation of 95% appeared on day 1 in the exponential growth phases of Chlorella sp. USTB-01 and 49.8% protein was found in the harvested microalgal cells.  相似文献   

15.
Environmental Chemistry Letters - The application of natural biopolymers such as polysaccharides for the fabrication of bio-based membranes has recently attracted attention for CO2...  相似文献   

16.
Xenon capture and Xe/Kr separation are important processes in industry.For instance,Xe/Kr separation is an indispensable step in recycle and treatment of nuclear fuel emission.Among different separation methods,selectively adsorb gas molecules using porous materials is a promising way to reduce the high energy consumption in traditional cryogenic distillation.However,many reported adsorbents still face the challenges of:ⅰ) poor separation property at low Xe/Kr concentrations;ⅱ) insufficient rete...  相似文献   

17.
Enhanced adsorption of arsenate on titanium dioxide using Ca and Mg ions   总被引:1,自引:0,他引:1  
In this study, we report the effects of pH and divalent cations on the adsorption of arsenate (As(V)) by titanium dioxide (TiO2) nanoparticles. The extent of As(V) adsorption on TiO2 decreased with increasing pH due to the decrease of positively charged binding sites on the TiO2 surface. The Langmuir maximum uptake capacity at pH 4 is about three times higher than that at pH 7. Here we show that the relatively low As(V) uptake at circumneutral pH could be substantially enhanced by the addition of common divalent cations such as magnesium and calcium. At a concentration of approximately 7 mM, magnesium and calcium increased the extent of As(V) adsorption from 2.1 to 6.5 and 7.7 mg As(V)/g TiO2, respectively.  相似文献   

18.
Environmental Chemistry Letters - Global pollution is calling for advanced methods to remove contaminants from water and wastewater, such as TiO2-assisted photocatalysis.  The...  相似文献   

19.
•The history of biological and artificial water channels is reviewed. •A comprehensive channel characterization platform is introduced. •Rationale designs and fabrications of biomimetic membranes are summarized. •The advantages, limitations, and challenges of biomimetic membranes are discussed. •The prospect and scalable solutions of biomimetic membranes are discussed. Bioinspired and biomimetic membranes that contain biological transport channels or attain their structural designs from biological systems have been through a remarkable development over the last two decades. They take advantage of the exceptional transport properties of those channels, thus possess both high permeability and selectivity, and have emerged as a promising solution to existing membranes. Since the discovery of biological water channel proteins aquaporins (AQPs), extensive efforts have been made to utilize them to make separation membranes–AQP-based membranes, which have been commercialized. The exploration of AQPs’ unique structures and transport properties has resulted in the evolution of biomimetic separation materials from protein-based to artificial channel-based membranes. However, large-scale, defect-free biomimetic membranes are not available yet. This paper reviews the state-of-the-art biomimetic membranes and summarizes the latest research progress, platform, and methodology. Then it critically discusses the potential routes of this emerging area toward scalable applications. We conclude that an appropriate combination of bioinspired concepts and molecular engineering with mature polymer industry may lead to scalable polymeric membranes with intrinsic selective channels, which will gain the merit of both desired selectivity and scalability.  相似文献   

20.
Environmental Chemistry Letters - Modern biomass and organic waste are becoming major, carbon-neutral sources of fine chemicals, biomolecules and fuels to replace fossil fuel products. As a...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号