首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bedner M  Maccrehan WA 《Chemosphere》2006,65(11):2130-2137
The reactivities of the amine-containing pharmaceuticals fluoxetine and metoprolol with hypochlorite were studied using conditions that simulate wastewater disinfection including neutral pH (7.0), a range of reaction times (2–60 min), and a molar excess of hypochlorite relative to the pharmaceutical concentration (5.7 times). The reactions were monitored using liquid chromatography (LC) with several detection modes including ultraviolet absorbance (UV), mass spectrometry (MS), and post-column reaction/reductive electrochemistry (EC) for determining active chlorine products. At levels of 10 μM, both compounds reacted rapidly (<2 min) to form principally N-chloramine products that were stable in aqueous solution for at least 1 h. The reaction was also studied in wastewater, and similar reactivity was noted. These results demonstrate that the cations fluoxetine and metoprolol are likely to be rapidly transformed into neutral N-chloramines during wastewater disinfection. The reactivity of the N-chloramines was also studied with sulfite to simulate dechlorination, which is often employed in wastewater treatment. Both N-chloramines reacted slowly with sulfite. In the pure water dechlorination experiments, it was estimated that 70% and 10% of the peak areas remained after 2 min reaction time for fluoxetine and metoprolol, respectively. At longer reaction times both N-chloramines had been completely reduced by sulfite, and the product of the sulfite reduction reaction was the parent pharmaceutical amine. Since typical dechlorination times in wastewater treatment are on the order of seconds, this suggests the chloramines formed from these two basic drugs might evade dechlorination and be released into the environment. The implications of chloramine release are discussed.  相似文献   

2.
Synthesized lead–iron (Pb/Fe) bimetallic particles were applied to dechlorinate hexachlorobenzene (HCB) under various conditions (e.g. bimetal amount, initial pH value, reaction temperature, and reaction duration). The results showed that adding Pb onto Fe benefited the dechlorination of HCB and the bimetal with 1.4% Pb content performed best. The degradation rate decreased regularly as the initial pH value of the aqueous increased from 1.9 to 11.1 except for pH 7.0 where the fastest dechlorination rate emerged. The dechlorination could be enhanced by increasing the amount of Pb/Fe or the reaction temperature. The dechlorination ratio of HCB within 15 min increased from 24.3% to 81.3% when Pb/Fe amount increased from 0.1 g to 0.8 g. The dechlorination followed pseudo-first-order kinetics, and the dechlorination rate constants were 0.0027, 0.0064, 0.0157, and 0.0321 min?1 at 25, 50, 70, and 85 °C, respectively, and the activation energy (Ea) of the dechlorination by Pb/Fe was 37.86 kJ mol?1.  相似文献   

3.
The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na+ and Ca2+ on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH = 7. Isotherms for the beta-blocker metoprolol were obtained by sediment–water batch tests over a wide concentration range (1–100 000 μg L?1). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n = 0.9), indicating slightly non-linear behavior. Results show that the influence of Ca2+ compared to Na+ is more pronounced. A logarithmic correlation between the Freundlich coefficient KFr and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface.  相似文献   

4.
Due to the high temporal and spatial variability of N2O fluxes, estimates of N2O emission from temperate forest ecosystems are still highly uncertain, particularly at larger scales. Although highest N2O emissions with up to 7.0 kg N ha−1 yr−1 were mainly reported for soils affected by stagnant water, most of the reported gas flux measurements were performed at forest sites with well-aerated soils yielding mostly to low mean annual emission rates less than 1.0 kg N ha−1 yr−1. This study compares N2O fluxes from upland (Cambisols) and temporally water-logged (Gleysols, Histosols) soils of the Central Black Forest (South-West Germany) over a period of 2 yr. Mean annual N2O fluxes from investigated soils ranged between 0.2 and 3.9 kg N ha−1 yr−1. The fluxes showed a large variability between the different soil types. Emissions could be clearly ranked in the following order: Cambisols (0.26–0.75 kg N ha−1 yr−1)<Gleysols (1.37–2.68 kg N ha−1 yr−1)<Histosol (3.66–3.95 kg N ha−1 yr−1). Although the Cambisols cover two-thirds of the investigated area, only about half of the overall N2O is emitted from this soil type. Therefore, regional or national N2O fluxes from temperate forest soils are underestimated if soils characterised by intermediate aeration conditions are disregarded.  相似文献   

5.
A bimolecular rate constant, kOH+Benzyl alcohol, of (28 ± 7) × 10?12 cm3 molecule?1 s?1 was measured using the relative rate technique for the reaction of the hydroxyl radical (OH) with benzyl alcohol, at (297 ± 3) K and 1 atm total pressure. Additionally, an upper limit of the bimolecular rate constant, kO3+Benzyl alcohol, of approximately 6 × 10?19 cm3 molecule?1 s?1 was determined by monitoring the decrease in benzyl alcohol concentration over time in an excess of ozone (O3). To more clearly define part of benzyl alcohol's indoor environment degradation mechanism, the products of the benzyl alcohol + OH were also investigated. The derivatizing agents O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) and N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) were used to positively identify benzaldehyde, glyoxal and 4-oxopentanal as benzyl alcohol/OH reaction products. The elucidation of other reaction products was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible benzyl alcohol/OH reaction mechanisms based on previously published volatile organic compound/OH gas-phase reaction mechanisms.  相似文献   

6.
Ammonia-nitrogen flux (NH3-N=(14/17)NH3) was determined from six anaerobic swine waste storage and treatment lagoons (primary, secondary, and tertiary) using the dynamic chamber system. Measurements occurred during the fall of 1998 through the early spring of 1999, and each lagoon was examined for approximately one week. Analysis of flux variation was made with respect to lagoon surface water temperature (∼15 cm below the surface), lagoon water pH, total aqueous phase NHx(=NH3+NH4+) concentration, and total Kjeldahl nitrogen (TKN). Average lagoon temperatures (across all six lagoons) ranged from approximately 10.3 to 23.3°C. The pH ranged in value from 6.8 to 8.1. Aqueous NHx concentration ranged from 37 to 909 mg N l−1, and TKN varied from 87 to 950 mg N l−1. Fluxes were the largest at the primary lagoon in Kenansville, NC (March 1999) with an average value of 120.3 μg N m−2 min−1, and smallest at the tertiary lagoon in Rocky Mount, NC (November 1998) at 40.7 μg N m−2 min−1. Emission rates were found to be correlated with both surface lagoon water temperature and aqueous NHx concentration. The NH3-N flux may be modeled as ln(NH3-N flux)=1.0788+0.0406TL+0.0015([NHx]) (R2=0.74), where NH3-N flux is the ammonia flux from the lagoon surface in μg N m−2 min−1, TL is the lagoon surface water temperature in °C, and [NHx] is the total ammonia-nitrogen concentration in mg N l−1.  相似文献   

7.
《Chemosphere》2013,92(11):1498-1505
Triclosan that is widely used as antimicrobial agent has been detected as contaminant in various aquatic environments. In this work, removal and biodegradation of triclosan in water by using a ubiquitous green alga, Chlorella pyrenoidosa was investigated. When C. pyrenoidosa was exposed to a series concentration of triclosan from 100 to 800 ng mL−1, more than 50% of triclosan was eliminated by algal uptake from the culture medium during the first 1 h exposure and reached equilibrium after the 6 h treatment. In the biodegradation experiments, a removal percentage of 77.2% was obtained after C. pyrenoidosa was cultivated with 800 ng mL−1 triclosan for 96 h. A major metabolite from the reductive dechlorination of triclosan was identified by using liquid chromatography coupled with electrospray ionization-mass spectrometry. The ultrastructural morphology of algal cells grown in the presence of triclosan was observed by using transmission electron microscopy and the growth of algal cells was detected. It was found that the trilcosan treatment resulted in the disruption of the chloroplast and the release of organic material into aquatic environment, which indicated that triclosan may affect membrane metabolism.  相似文献   

8.
Aromatic hydrocarbons are important constituents of vehicle exhaust and of non-methane volatile organic compounds in ambient air in urban areas. It has recently been proposed that dealkylation is a significant pathway for the OH radical-initiated reactions, leading to the formation of phenolic compounds and/or oxepins (Noda, J., Volkamer, R., Molina, M.J., 2009. Dealkylation of alkylbenzenes: a significant pathway in the toluene, o-, m-, and p-xylene + OH reaction. Journal of Physical Chemistry A 113, 9658–9666.). We have investigated the formation of cresols from the reactions of OH radicals with m-xylene and p-cymene, and obtain upper limits of <1% for formation of each cresol isomer from OH + m-xylene and <2% for formation of each cresol isomer from OH + p-cymene. In addition, we have measured the formation yield of 4-methylacetophenone (the major product formed subsequent to H-atom abstraction from the CH(CH3)2 group) in the OH + p-cymene reaction to be 14.8 ± 3.2%, and estimate that H-atom abstraction from the CH3 and CH(CH3)2 groups in p-cymene accounts for 20 ± 4% of the overall OH radical reaction. We also used a relative rate technique to measure the rate constant for the reaction of OH radicals with 4-methylacetophenone to be (4.50 ± 0.43) × 10?12 cm3 molecule?1 s?1 at 297 ± 2 K.  相似文献   

9.
The Seasonally Integrated Flux (SIF) of N2O emission during pulse cultivation in Rabi season (Season-I: December to April) in rain-fed uplands of Orissa, was found to be 17.7 ± 0.07, 18.7 ± 0.16 and 43.3 ± 0.14 gha?1 for horse gram (HG), black gram (BG) and green gram (GG) respectively. During the subsequent Rabi season (Season-II), the SIF of N2O for BG and GG cultivated in the same fields were 20.9 ± 0.24 and 38.0 ± 0.42 gha?1 respectively. Similarly SIF values during rice cultivation with different cultivars have also been calculated to be in the range ?20.05 ± 0.33 to 21.98 ± 0.29. Statistical analysis showed good correlation of N2O emission with climatic and soil parameters like temperature, nutrient N and organic matter in soil during pulse cultivation. Multivariate analysis was carried out to factorize the results obtained. Using student ‘t’ test, the N2O emission was observed to be similar for two consecutive Rabi seasons for pulses like BG and GG.  相似文献   

10.
The gas-phase ozonolysis of (E)-β-farnesene was investigated in a 3.91 m3 atmospheric simulation chamber at 296 ± 2 K and relative humidity of around 0.1%. The relative rate method was used to determine the reaction rate coefficient of (4.01 ± 0.17) × 10?16 cm3 molecule?1 s?1, where the indicated errors are two least-squares standard deviations and do not include uncertainties in the rate coefficients for the reference compounds (γ-terpinene, cis-cyclooctene and 1,5-cyclooctadiene). Gas phase carbonyl products were collected using a denuder sampling technique and analyzed with GC/MS following derivatization with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA). The reaction products detected were acetone, 4-oxopentanal, methylglyoxal, 4-methylenehex-5-enal, 6-methylhept-5-en-2-one, and (E)-4-methyl-8-methylenedeca-4,9-dienal. A detailed mechanism for the gas-phase ozonolysis of (E)-β-farnesene is proposed, which accounts for all of the products observed in this study. The results of this work indicate that the atmospheric reaction of (E)-β-farnesene with ozone has a lifetime of around 1 h and is another possible source of the ubiquitous carbonyls, acetone, 4-oxopentanal and 6-methylhept-5-en-2-one in the atmosphere.  相似文献   

11.
A highly sensitive technique for the measurement of atmospheric HONO and HNO3 is reported. The technique is based on aqueous scrubbing using two coil samplers, followed by conversion of HNO3 to nitrite, derivatization of nitrite to a highly light-absorbing azo dye with sulfanilamide (SA) and N-(1-naphthyl) ethylenediamine (NED), and high performance liquid chromatography (HPLC) analysis. HNO3 concentration was obtained by the difference of the two channels. Two scrubbing solutions were used for sampling the two species: a 1-mM phosphate buffer solution (pH 7) for the measurement of HONO and a 180 mM NH4Cl/NH3 buffer solution (pH 8.5) for the measurement of HONO+HNO3. The scrubbing solution flow rate was 0.24 ml min−1 and the gas sampling flow rate was 2 l min−1. HNO3 in the NH4Cl/NH3 buffer solution was quantitatively reduced to nitrite along an on-line 0.8-cm Cd reductor column. Nitrite in both channels was derivatized with 2 mM SA and 0.2 mM NED in 25 mM HCl. Quantitative derivatization was achieved within 5 min at 55°C. The azo dye derivative was then separated from the SA/NED reagent by reversed-phase HPLC and detected with a UV-vis detector at 540 nm. With an on-line SEP-PAK C-18 cartridge for the reagent purification, the method detection limit is estimated to be better than 1 pptv for HONO and about 20 pptv for HNO3. The sample integration time was about 2 min and the sampling frequency is every 10 min. Data collected in downtown Albany and Whiteface Mountain, NY, are shown as examples of applications of this technique in both urban and remote clean environments.  相似文献   

12.
The importance of municipal wastewater land application to nitric oxide production and transport in soil was studied through the formulation and conduct of a comprehensive laboratory testing protocol. Nitric oxide (NO) is a precursor in the formation of tropospheric ozone which can directly impact public health and the environment. It is the uncertainty in the NO budget, and its relation to O3, that motivates the need for measurements and modeling of NO flux from soils. Wastewater-amended soil is potentially one important component of that budget. NO emissions reported here were measured from: a well-characterized unamended soil, water-amended soil, and wastewater-amended soil in the laboratory in a dynamic test chamber. Laboratory results indicate that NO emissions from the selected sandy loam soil ranged from 0.3 to 0.4 ng N m-2 s-1 per cm2 of unamended soil, while water-amended soil emissions ranged from 0.4 to 0.7 ng N m-2 s-1 per cm2. NO flux from wastewater-amended soil ranged from 1.0 to 1.2 ng N m-2 s-1 per cm2 of applied soil.  相似文献   

13.
We reconstructed the historical trends in atmospheric deposition of nitrogen to Cape Cod, Massachusetts, from 1910 to 1995 by compiling data from literature sources, and adjusting the data for geographical and methodological differences. The reconstructed data suggest that NO3-N wet deposition to this region increased from a low of 0.9 kg N ha−1 yr−1 in 1925 to a high of approximately 4 kg N ha−1 yr−1 around 1980. The trend in NO3-N deposition has remained since the early 1980s at around 3.6 kg N ha−1 yr−1. In contrast, NH4-N wet deposition decreased from more than 4 kg N ha−1 yr−1 in the mid 1920s to about 1.5 kg N ha−1 yr−1 from the late-1940s until today. Emissions of NOx-N in the Cape Cod airshed increased at a rate of 2.1 kg N ha−1 per decade since 1910, a rate that is an order of magnitude higher than NO3-N deposition. Estimates of NH3 emissions to the northeast United States and Canada have decreased slightly throughout the century, but the decrease in reconstructed N-NH4+ deposition rates does not parallel emissions estimates. The trend in reconstructed total nitrogen deposition suggests an overall increase through the century at a rate of 0.26 kg N ha−1 per decade. This overall increase in deposition may expose coastal forests to rates of nitrogen addition that, if exceeded, could induce nitrogen saturation and increase nitrogen loads to adjoining estuaries.  相似文献   

14.
The quality of rural life can be affected by offensive odors released from animal buildings and storage units. The objectives of this study were to compare the concentrations of odor and odorants above different types of stirred swine slurry to analyze the relationships between concentrations of odor (and odorants) and physicochemical characteristics of the slurry (i.e. pH, temperature, dry matter, volatile solids, and concentration of 22 chemical compounds); and to propose predictive models for the odor concentration (OC) based on these physicochemical characteristics (solely and in combination with concentrations of specific odorants in the air above the slurries). The study comprised data on concentrations of odor and odorants in the air above slurry samples (fresh and/or stored) collected from production units with farrowing sows, finishing swines, or weaning pigs at eight swine operations (N = 48). OC measured in the air above stirred swine slurry samples were not significantly different among production types or storage times. The physicochemical characteristics of the slurries were not useful for predicting OC or concentrations of hydrogen sulfide (or organic sulfides) above the slurry, but were related to concentrations of other emitted gases such as phenols and indoles (r2 = 0.65–0.79, p <0.05), ammonia (r2 = 0.86, p < 0.05) and carboxylic acids (r2 = 0.23–0.59, p <0.05). There was good precision of predictive models of OC based on selected slurry characteristics (i.e. pH, dry matter, nitrogen content, sulfur content or concentrations of individual aromatic compounds and carboxylic acids) together with concentrations of specific odorants in the air (e.g. hydrogen sulfide) (r2 between 0.70 and 0.92). This study suggests that predictive models could be useful for evaluating odor nuisance potentials of swine slurry during handling.  相似文献   

15.
16.
There is scant information related to heterogeneous indoor chemistry at ozone concentrations necessary for the effective disinfection of buildings, i.e., hundreds to thousands of ppm. In the present study, 24 materials were exposed for 16 h to ozone concentrations of 1000–1200 ppm in the inlet streams of test chambers. Initial ozone deposition velocities were similar to those reported in the published literature for much lower ozone concentrations, but decayed rapidly as reaction sites on material surfaces were consumed. For every material, deposition velocities converged to a relatively constant, and typically low, value after approximately 11 h. The four materials with the highest sustained deposition velocities were ceiling tile, office partition, medium density fiberboard and gypsum wallboard backing. Analysis of ozone reaction probabilities indicated that throughout each experiment, and particularly after several hours of disinfection, surface reaction resistance dominated the overall resistance to ozone deposition for nearly all materials. Total building disinfection by-products (all carbonyls) were quantified per unit area of each material for the experimental period. Paper, office partition, and medium density fiberboard each released greater than 38 mg m−2 of by-products.  相似文献   

17.
Comparisons were made between the predictions of six photochemical air quality simulation models (PAQSMs) and three indicators of ozone response to emission reductions: the ratios of O3/NOz and O3/NOy and the extent of reaction. The values of the two indicator ratios and the extent of reaction were computed from the model-predicted mixing ratios of ozone and oxidized nitrogen species and were compared to the changes in peak 1 and 8 h ozone mixing ratios predicted by the PAQSMs. The ozone changes were determined from the ozone levels predicted for base-case emission levels and for reduced emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx). For all simulations, the model-predicted responses of peak 1 and 8 h ozone mixing ratios to VOC or NOx emission reductions were correlated with the base-case extent of reaction and ratios of O3/NOz and O3/NOy. Peak ozone values increased following NOx control in 95% (median over all simulations) of the high-ozone (>80 ppbv hourly mixing ratio in the base-case) grid cells having mean afternoon O3/NOz ratios less than 5 : 1, O3/NOy less than 4 : 1, or extent less than 0.6. Peak ozone levels decreased in response to NOx reductions in 95% (median over all simulations) of the grid cells having peak hourly ozone mixing ratios greater than 80 ppbv and where mean afternoon O3/NOz exceeded 10 : 1, O3/NOy was greater than 8 : 1, or extent exceeded 0.8. Ozone responses varied in grid cells where O3/NOz was between 5 : 1 and 10 : 1, O3/NOy was between 4 : 1 and 8 : 1, or extent was between 0.6 and 0.8. The responses in such grid cells were affected by ozone responses in upwind grid cells and by the changes in ozone levels along the upwind boundaries of the modeling domains.  相似文献   

18.
The liquid chromatography–electrospray ionization-tandem mass spectrometer (LC–MS/MS) method coupled with an automated solid-phase extraction procedure has been developed to identify 22 psychiatric pharmaceuticals, including seven anxiolytic-sedative-hypnotics, six antidepressants, and nine anti-schizophrenia drugs, in wastewater samples from two psychiatric hospital wastewater treatment plants (P-WWTPs) and three municipal wastewater treatment plants (M-WWTPs) in Beijing, China. Analyte recoveries from spiking experiments in the WWTP influent and effluent at three concentrations ranged from 70% to 110%, excluding sulpiride, ziprasidone, and olanzapine. Method detection limits for five, eight, and nine analytes in the WWTP influent and effluent were 20–80, 1–16, and <1 ng L?1, respectively. High psychiatric pharmaceutical concentrations (e.g., ~942 ng L?1oxazepam, 5552–12,782 ng L?1 clozapine, 2762–9832 ng L?1sulpiride, and 2030–4967 ng L?1quetiapine) were frequently observed in P-WWTP influent compared to M-WWTPs. Although P-WWTPs typically had higher removal rates, significantly higher concentrations of the target compounds were observed in the P-WWTP secondary effluent than in the M-WWTP influent (e.g., ~752 ng L?1oxazepam, ~8183 ng L?1 clozapine, ~10,833 ng L?1sulpiride, and ~1168 ng L?1quetiapine). Thus, the discharge control of psychiatric pharmaceuticals from psychiatric hospitals requires improvement.  相似文献   

19.
This paper reports on a field study that was part of a large-scale, multi-seasonal research study with the North Carolina Department of Environment, Health, and Natural Resources, to measure nitrogen emissions from an intensive swine confinement facility. The study measured emission rates using tracer gases and a horizontal network of open-path Fourier transform infrared (FTIR) optical rays placed less than a meter above the surface of an approximately 6 acre intensive swine waste lagoon in Eastern North Carolina. This network of rays simultaneously monitored the ammonia and the tracer gases every 2 min. The open-path measurements were combined with the mathematical mapping techniques of computer-assisted tomography (CAT) to create two-dimensional concentration maps of the gases for the entire lagoon surface. For this study, a ratioing technique was applied to the tomographic concentration maps to estimate the nitrogen emission rates (from ammonia) using known tracer emission rates. The average concentrations of ammonia measured in August, November, and May were 0.81, 0.25, and 0.74 ppm, respectively. In general, ammonia concentrations were lowest at the center of the lagoon and could vary across a lagoon from 2 to 4 times depending upon the time of the day and the meteorological conditions. Emission rates were only calculated for November and May, up until midnight. In November 1997, the average flux was 1910 μg N m−2-min−1 (range 542–4695 μg N m−2-min−1) and in May the average flux was 4775 μg N m−2-min−1 (range 2572–8499 μg N m−2-min−1). This study was important because it not only provided nitrogen emission rate measurements using a new technology which can measure concentrations over large areas in real time, it was the first large-scale outdoor field study using this application.  相似文献   

20.
A field experiment was conducted in August 1998 to investigate the concentrations of isoprene and isoprene reaction products in the surface and mixed layers of the atmosphere in Central Texas. Measured near ground-level concentrations of isoprene ranged from 0.3 (lower limit of detection – LLD) to 10.2 ppbv in rural regions and from 0.3 to 6.0 ppbv in the Austin urban area. Rural ambient formaldehyde levels ranged from 0.4 ppbv (LLD) to 20.0 ppbv for 160 rural samples collected, while the observed range was smaller at Austin (0.4–3.4 ppbv) for a smaller set of samples (37 urban samples collected). Methacrolein levels did not vary as widely, with rural measurements from 0.1 ppbv (LLD) to 3.7 ppbv and urban concentrations varying between 0.2 and 5.7 ppbv. Isoprene flux measurements, calculated using a simple box model and measured mixed-layer isoprene concentrations, were in reasonable agreement with emission estimates based on local ground cover data. Ozone formation attributable to biogenic hydrocarbon oxidation was also calculated. The calculations indicated that if the ozone formation occurred at low VOC/NOx ratios, up to 20 ppbv of ozone formed could be attributable to biogenic photooxidation. In contrast, if the biogenic hydrocarbon reaction products were formed under low NOx conditions, ozone production attributable to biogenics oxidation would be as low as 1 ppbv. This variability in ozone formation potentials implies that biogenic emissions in rural areas will not lead to peak ozone levels in the absence of transport of NOx from urban centers or large rural NOx sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号