首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CNT-TiO2 composite is used to activate PMS under UV-light assistance. Superior performance is due to the enhanced electron-transfer ability of CNT. SO4, •OH and 1O2 play key roles in the degradation of organic pollutants. In this work, a UV-light assisted peroxymonosulfate (PMS) activation system was constructed with the composite catalyst of multi-walled carbon nanotubes (CNT) - titanium dioxide (TiO2). Under the UV light irradiation, the photoinduced electrons generated from TiO2 could be continuously transferred to CNT for the activation of PMS to improve the catalytic performance of organic pollutant degradation. Meanwhile, the separation of photoinduced electron-hole pairs could enhance the photocatalysis efficiency. The electron spin resonance spectroscopy (EPR) and quenching experiments confirmed the generation of sulfate radical (SO4), hydroxyl radical (•OH) and singlet oxygen (1O2) in the UV/PMS/20%CNT-TiO2 system. Almost 100% phenol degradation was observed within 20 min UV-light irradiation. The kinetic reaction rate constant of the UV/PMS/20%CNT-TiO2 system (0.18 min1) was 23.7 times higher than that of the PMS/Co3O4 system (0.0076 min1). This higher catalytic performance was ascribed to the introduction of photoinduced electrons, which could enhance the activation of PMS by the transfer of electrons in the UV/PMS/CNT-TiO2 system.  相似文献   

2.
• 4-chlorophenol biodegradation could be enhanced in Fe2O3 coupled anaerobic system. • Metabolic activity and electron transport could be improved by Fe2O3 nanoparticles. • Functional microbial communities could be enriched in coupled anaerobic system. • Possible synergistic mechanism involved in enhanced dechlorination was proposed. Fe2O3 nanoparticles have been reported to enhance the dechlorination performance of anaerobic systems, but the underlying mechanism has not been clarified. This study evaluated the technical feasibility, system stability, microbial biodiversity and the underlying mechanism involved in a Fe2O3 nanoparticle-coupled anaerobic system treating 4-chlorophenol (4-CP) wastewater. The results demonstrated that the 4-CP and total organic carbon (TOC) removal efficiencies in the Fe2O3-coupled up-flow anaerobic sludge blanket (UASB) were always higher than 97% and 90% during long-term operation, verifying the long-term stability of the Fe2O3-coupled UASB. The 4-CP and TOC removal efficiencies in the coupled UASB increased by 42.9±0.4% and 27.5±0.7% compared to the control UASB system. Adding Fe2O3 nanoparticles promoted the enrichment of species involved in dechlorination, fermentation, electron transfer and acetoclastic methanogenesis, and significantly enhanced the extracellular electron transfer ability, electron transport activity and conductivity of anaerobic sludge, leading to enhanced 4-CP biodegradation performance. A possible synergistic mechanism involved in enhanced anaerobic 4-CP biodegradation by Fe2O3 nanoparticles was proposed.  相似文献   

3.
• Strong metal-support interaction exists on Pt/Fe3O4 catalysts. • Pt metal particles facilitate the formation of oxygen vacancies on Fe3O4. • Fe3O4 supports enhance the strength of CO adsorption on Pt metal particles. The self-inhibition behavior due to CO poisoning on Pt metal particles strongly impairs the performance of CO oxidation. It is an effective method to use reducible metal oxides for supporting Pt metal particles to avoid self-inhibition and to improve catalytic performance. In this work, we used in situ reductions of chloroplatinic acid on commercial Fe3O4 powder to prepare heterogeneous-structured Pt/Fe3O4 catalysts in the solution of ethylene glycol. The heterogeneous Pt/Fe3O4 catalysts achieved a better catalytic performance of CO oxidation compared with the Fe3O4 powder. The temperatures of 50% and 90% CO conversion were achieved above 260°C and 290°C at Pt/Fe3O4, respectively. However, they are accomplished on Fe3O4 at temperatures higher than 310°C. XRD, XPS, and H2-TPR results confirmed that the metallic Pt atoms have a strong synergistic interaction with the Fe3O4 supports. TGA results and transient DRIFTS results proved that the Pt metal particles facilitate the release of lattice oxygen and the formation of oxygen vacancies on Fe3O4. The combined results of O2-TPD and DRIFTS indicated that the activation step of oxygen molecules at surface oxygen vacancies could potentially be the rate-determining step of the catalytic CO oxidation at Pt/Fe3O4 catalysts. The reaction pathway involves a Pt-assisted Mars-van Krevelen (MvK) mechanism.  相似文献   

4.
Fe2O3-CeO2-Bi2O3/γ-Al2O3, an environmental friendly material, was investigated. The catalyst exhibited good catalytic performance in the CWAO of cationic red GTL. The apparent activation energy for the reaction was 79 kJ·mol−1. HO2· and O2· appeared as the main reactive species in the reaction. The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst, a novel environmental-friendly material, was used to investigate the catalytic wet air oxidation (CWAO) of cationic red GTL under mild operating conditions in a batch reactor. The catalyst was prepared by wet impregnation, and characterized by special surface area (BET measurement), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst exhibited good catalytic activity and stability in the CWAO under atmosphere pressure. The effect of the reaction conditions (catalyst loading, degradation temperature, solution concentration and initial solution pH value) was studied. The result showed that the decolorization efficiency of cationic red GTL was improved with increasing the initial solution pH value and the degradation temperature. The apparent activation energy for the reaction was 79 kJ·mol1. Hydroperoxy radicals (HO2·) and superoxide radicals (O2·) appeared as the main reactive species upon the CWAO of cationic red GTL.  相似文献   

5.
以活性氧化铝为载体,采用浸渍法制备催化剂,对甲基橙及草酸模拟废水进行处理.在中性条件下,臭氧催化氧化比单独臭氧氧化能提前30 min使得甲基橙溶液褪色,反应105 min时,臭氧催化氧化对TOC的去除率高达96.53%,比单独使用臭氧氧化对甲基橙TOC去除率提高了47.19%,在处理草酸废水时臭氧催化氧化对TOC去除率高达80.59%,比单独使用臭氧氧化对草酸TOC去除率提高了59.14%.在处理甲基橙及草酸的小试实验中催化剂对有机污染物的吸附作用起到了加快反应进行的作用.在对垃圾渗滤液超滤出水时,O3与COD质量比为1:1时,臭氧催化氧化对COD去除率为49.09%,比单独使用臭氧氧化提高36.37%,臭氧催化氧化对TOC的去除率是单独使用臭氧氧化的2.54倍,在处理垃圾渗滤液纳滤浓水时,臭氧催化氧化对COD去除率高达88.72%,比单独使用臭氧氧化提高37.60%,并且臭氧催化氧化对TOC的去除率是单独臭氧氧化的1.6倍.臭氧催化氧化反应过程中产生的羟基自由基对有机物更快的反应速率.  相似文献   

6.
磷酸活化活性炭对Cu2+的吸附特征研究   总被引:1,自引:0,他引:1  
寻求廉价而高效的吸附材料为目的,研究向日葵秸杆基活性炭对铜离子的吸附性能。以向日葵秸秆为原料,经H3PO4活化制备活性炭,通过静态实验研究了其对水溶液中Cu2+的吸附特性,考察了溶液pH值、吸附温度和离子强度对吸附的影响,探讨了吸附热力学、动力学和吸附机理。结果表明:溶液pH值为5~6时活性炭对Cu2+的去除效果最好;向50 mL 170 mg·L-1的溶液中加入0.5 g活性炭,温度为45℃、吸附时间为1 h时,对Cu2+的去除率可达98.3%;Langmuir方程能更好地描述Cu2+在活性炭上的等温吸附特征,静态吸附容量可达41.03 mg·g-1;吸附过程符合拟二级动力学过程,且为吸热的化学吸附过程,膜扩散为速率控制步骤,离子交换可能在吸附过程中起了重要作用。  相似文献   

7.
Electrochemical conversion of CO2 to hydrocarbons can relieve both environmental and energy stresses. However, electrocatalysts for this reaction usually suffer from a poor product selectivity and a large overpotential. Here we report that tunable catalytic selectivity for hydrocarbon formation could be achieved on Cu nanomaterials with different morphologies. By tuning the electrochemical parameters, either Cu oxide nanowires or nanoneedles were fabricated and then electrochemically reduced to the corresponding Cu nanomaterials. The Cu nanowires preferred the formation of C2H4, while the Cu nanoneedles favored the production of more CH4, rather than C2H4. Our work provides a facile synthetic strategy for preparing Cu-based nanomaterials to achieve selective CO2 reduction.  相似文献   

8.
• Nano CaO2 is evaluated as a remediation agent for 2,4-DCP contaminated groundwater. • 2,4-DCP degradation mechanism by different Fe2+ concentration was proposed. • 2,4-DCP was not degraded in the system for solution pH>10. • The 2,4-DCP degradation area is inconsistent with the nano CaO2 distribution area. This study evaluates the applicability of nano-sized calcium peroxide (CaO2) as a source of H2O2 to remediate 2,4-dichlorophenol (2,4-DCP) contaminated groundwater via the advanced oxidation process (AOP). First, the effect and mechanism of 2,4-DCP degradation by CaO2 at different Fe concentrations were studied (Fenton reaction). We found that at high Fe concentrations, 2,4-DCP almost completely degrades via primarily the oxidation of •OH within 5 h. At low Fe concentrations, the degradation rate of 2,4-DCP decreased rapidly. The main mechanism was the combined action of •OH and O2•−. Without Fe, the 2,4-DCP degradation reached 13.6% in 213 h, primarily via the heterogeneous reaction on the surface of CaO2. Besides, 2,4-DCP degradation was significantly affected by solution pH. When the solution pH was>10, the degradation was almost completely inhibited. Thus, we adopted a two-dimensional water tank experiment to study the remediation efficiency CaO2 on the water sample. We noticed that the degradation took place mainly in regions of pH<10 (i.e., CaO2 distribution area), both upstream and downstream of the tank. After 28 days of treatment, the average 2,4-DCP degradation level was ≈36.5%. Given the inadequacy of the results, we recommend that groundwater remediation using nano CaO2: (1) a buffer solution should be added to retard the rapid increase in pH, and (2) the nano CaO2 should be injected copiously in batches to reduce CaO2 deposition.  相似文献   

9.
• Real ML-GFW with high salinity and high organics was degraded by O3/H2O2 process. • Successful optimization of operation conditions was attained using RSM based on CCD. • Single-factor experiments in advance ensured optimal experimental conditions. • The satisfactory removal efficiency of TOC was achieved in spite of high salinity. • The initial pH plays the most significant role in the degradation of ML-GFW. The present study reports the use of the O3/H2O2 process in the pretreatment of the mother liquor of gas field wastewater (ML-GFW), obtained from the multi-effect distillation treatment of the gas field wastewater. The range of optimal operation conditions was obtained by single-factor experiments. Response surface methodology (RSM) based on the central composite design (CCD) was used for the optimization procedure. A regression model with Total organic carbon (TOC) removal efficiency as the response value was established (R2 = 0.9865). The three key factors were arranged according to their significance as: pH>H2O2 dosage>ozone flow rate. The model predicted that the best operation conditions could be obtained at a pH of 10.9, an ozone flow rate of 0.8 L/min, and H2O2 dosage of 6.2 mL. The dosing ratio of ozone was calculated to be 9.84 mg O3/mg TOC. The maximum removal efficiency predicted was 75.9%, while the measured value was 72.3%. The relative deviation was found to be in an acceptable range. The ozone utilization and free radical quenching experiments showed that the addition of H2O2 promoted the decomposition of ozone to produce hydroxyl radicals (·OH). This also improved the ozone utilization efficiency. Gas chromatography-mass spectrometry (GC-MS) analysis showed that most of the organic matters in ML-GFW were degraded, while some residuals needed further treatment. This study provided the data and the necessary technical supports for further research on the treatment of ML-GFW.  相似文献   

10.
• Size and shape-dependent MnFe2O4 NPs were prepared via a facile method. • Ligand-exchange chemistry was used to prepare the hydrophilic MnFe2O4 NPs. • The catalytic properties of MnFe2O4 NPs toward dye degradation were fully studied. • The catalytic activities of MnFe2O4 NPs followed Michaelis–Menten behavior. • All the MnFe2O4 NPs exhibit selective degradation to different dyes. The magnetic nanoparticles that are easy to recycle have tremendous potential as a suitable catalyst for environmental toxic dye pollutant degradation. Rationally engineering shapes and tailoring the size of nanocatalysts are regarded as an effective manner for enhancing performances. Herein, we successfully synthesized three kinds of MnFe2O4 NPs with distinctive sizes and shapes as catalysts for reductive degradation of methylene blue, rhodamine 6G, rhodamine B, and methylene orange. It was found that the catalytic activities were dependent on the size and shape of the MnFe2O4 NPs and highly related to the surface-to-volume ratio and atom arrangements. Besides, all these nanocatalysts exhibit selectivity to different organic dyes, which is beneficial for their practical application in dye pollutant treatment. Furthermore, the MnFe2O4 NPs could be readily recovered by a magnet and reused more than ten times without appreciable loss of activity. The size and shape effects of MnFe2O4 nanoparticles demonstrated in this work not only accelerate further understanding the nature of nanocatalysts but also contribute to the precise design of nanoparticles catalyst for pollutant degradation.  相似文献   

11.
• A V2O5/TiO2 granular catalyst for simultaneous removal of NO and chlorobenzene. • Catalyst synthesized by vanadyl acetylacetonate showed good activity and stability. • The kinetic model was established and the synergetic activity was predicted. • Both chlorobenzene oxidation and SCR of NO follow pseudo-first-order kinetics. • The work is of much value to design of multi-pollutants emission control system. The synergetic abatement of multi-pollutants is one of the development trends of flue gas pollution control technology, which is still in the initial stage and facing many challenges. We developed a V2O5/TiO2 granular catalyst and established the kinetic model for the simultaneous removal of NO and chlorobenzene (i.e., an important precursor of dioxins). The granular catalyst synthesized using vanadyl acetylacetonate precursor showed good synergistic catalytic performance and stability. Although the SCR reaction of NO and the oxidation reaction of chlorobenzene mutually inhibited, the reaction order of each reaction was not considerably affected, and the pseudo-first-order reaction kinetics was still followed. The performance prediction of this work is of much value to the understanding and reasonable design of a catalytic system for multi-pollutants (i.e., NO and dioxins) emission control.  相似文献   

12.
本研究以硝酸铈、硝酸锆为原料使用溶剂热合成法,制备了CeO2-ZrO2纳米棒催化剂(Ce0.7Zr0.3O2(NR)),并用于柴油车尾气碳颗粒催化净化.催化活性检测证实:Ce0.7Zr0.3O2(NR)纳米棒催化剂可有效净化柴油车尾气碳烟颗粒.在Ce0.7Zr0.3O2(NR)存在下,碳颗粒净化率为10%、50%和90%时,所需温度分别仅为375℃、414℃和455℃,比商用Ce0.7Zr0.3O2和Ce0.3Zr0.7O2催化剂性能更优.采用氮吸附-脱附、X射线光电子能谱(XPS)、H2程序升温还原(H2-TPR)、X射线衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等技术对催化剂进行表征.XRD和Raman结果证实,Ce0.7Zr0.3O2(NR)主要由立方相CeO2构成,并掺杂了少量四方相氧化锆.SEM和TEM结果则显示,Ce0.7Zr0.3O2(NR)催化剂颗粒明显由纳米棒堆积而成,特定的纳米形貌会影响其对碳颗粒的催化氧化活性.XPS结果证明Ce0.7Zr0.3O2(NR)催化剂主要具有晶格氧、化学氧和表面吸附氧等氧物种;晶格氧是碳颗粒氧化的活性氧物种,其溢流到催化剂表面可与碳颗粒接触从而提高反应活性;化学氧和表面吸附氧均为表面氧物种,极易与表面固体碳颗粒直接接触,从而可在较低温度下促进碳颗粒的净化.H2-TPR结果进一步证实了XPS结果,Ce0.7Zr0.3O2(NR)催化剂的低温还原温度比商用Ce0.7Zr0.3O2催化剂更低,且含有更多的易还原氧物种,这些低温易还原氧物种可以在较低温度下参与催化反应,促进柴油车尾气颗粒物的低温催化净化.  相似文献   

13.
• Nano Fe2O3 and N-doped graphene was prepared via a one-step ball milling method. • The maximum power density of Fe-N-G in MFC was 390% of that of pristine graphite. • Active sites like nano Fe2O3, pyridinic N and Fe-N groups were formed in Fe-N-G. • The improvement of Fe-N-G was due to full exposure of active sites on graphene. Developing high activity, low-cost and long durability catalysts for oxygen reduction reaction is of great significance for the practical application of microbial fuel cells. The full exposure of active sites in catalysts can enhance catalytic activity dramatically. Here, novel Fe-N-doped graphene is successfully synthesized via a one-step in situ ball milling method. Pristine graphite, ball milling graphene, N-doped graphene and Fe-N-doped graphene are applied in air cathodes, and enhanced performance is observed in microbial fuel cells with graphene-based catalysts. Particularly, Fe-N-doped graphene achieves the highest oxygen reduction reaction activity, with a maximum power density of 1380±20 mW/m2 in microbial fuel cells and a current density of 23.8 A/m2 at –0.16 V in electrochemical tests, which are comparable to commercial Pt and 390% and 640% of those of pristine graphite. An investigation of the material characteristics reveals that the superior performance of Fe-N-doped graphene results from the full exposure of Fe2O3 nanoparticles, pyrrolic N, pyridinic N and excellent Fe-N-G active sites on the graphene matrix. This work not only suggests the strategy of maximally exposing active sites to optimize the potential of catalysts but also provides promising catalysts for the use of microbial fuel cells in sustainable energy generation.  相似文献   

14.
过氧化氢(H_2O_2)和一氧化氮(NO)作为信号分子,可调节植物生长、发育以及应对外源性胁迫。利用过氧化氢酶(CAT)以及NO清除剂(PTIO),研究了除草剂阿特拉津(atrazine,100μg·L~(-1))影响小球藻生长的机理,并分析内源性H_2O_2和NO在小球藻抗除草剂胁迫中的作用。研究结果表明,阿特拉津在诱发小球藻细胞死亡的过程中,不同程度促发了H_2O_2和NO生成;外源CAT可通过清除H_2O_2和诱导NO来缓解阿特拉津对小球藻的生长抑制;PTIO与阿特拉津的联合实验进一步证实,小球藻体内的NO诱导与H_2O_2的爆发无关,它们之间的合成没有相关性。因此,除草剂阿特拉津主要通过诱导小球藻体内的H_2O_2爆发来破坏藻细胞,抑制其生长,与NO的信号传递无关。  相似文献   

15.
MC-LR removal performances under different AOPs were compared systematically. Higher removal efficiency and synergistic effects were obtained by combined process. The acute biotoxicity raised in different degrees after oxidation. Microcystin-LR attracts attention due to its high toxicity, high concentration and high frequency. The removal characteristics of UV/H2O2 and O3/H2O2 advanced oxidation processes and their individual process for MC-LR were investigated and compared in this study. Both the removal efficiencies and rates of MC-LR as well as the biotoxicity of degradation products was analyzed. Results showed that the UV/H2O2 process and O3/H2O2 were effective methods to remove MC-LR from water, and they two performed better than UV-, O3-, H2O2-alone processes under the same conditions. The effects of UV intensity, H2O2 concentration and O3 concentration on the removal performance were explored. The synergistic effects between UV and H2O2, O3 and H2O2 were observed. UV dosage of 1800 mJ·cm2 was required to remove 90% of 100 mg·L1 MC-LR, which amount significantly decreased to 500 mJ·cm2 when 1.7 mg·L1 H2O2 was added. 0.25 mg·L1 O3, or 0.125 mg·L1 O3 with 1.7 mg·L1 H2O2 was needed to reach 90% removal efficiency. Furthermore, the biotoxicity results about these UV/H2O2, O3/H2O2 and O3-alone processes all present rising trends with oxidation degree of MC-LR. Biotoxicity of solution, equivalent to 0.01 mg·L1 Zn2+, raised to 0.05 mg·L1 Zn2+ after UV/H2O2 or O3/H2O2 reaction. This phenomenon may be attributed to the aldehydes and ketones with small molecular weight generated during reaction. Advice about the selection of MC-LR removal methods in real cases was provided.  相似文献   

16.
? The Cu–Ni/γ-Al2O3 catalyst was prepared to study HCN hydrolysis ? On catalyst calcined at 400°C, the HCN removal efficiency reaches a maximum. ? HCN removal is the highest at 480 min at a H 2 O/HCN volume ratio of 150 ? The presence of CO facilitates HCN hydrolysis and increases NH 3 production. ? O 2 increases the HCN removal and NOx production but decreases NH 3 production GRAPHIC ABSTRACT To decompose efficiently hydrogen cyanide (HCN) in exhaust gas, g-Al2O3-supported bimetallic-based Cu–Ni catalyst was prepared by incipient-wetness impregnation method. The effects of the calcination temperature, H2O/HCN volume ratio, reaction temperature, and the presence of CO or O2 on the HCN removal efficiency on the Cu–Ni/g-Al2O3 catalyst were investigated. To examine further the efficiency of HCN hydrolysis, degradation products were analyzed. The results indicate that the HCN removal efficiency increases and then decreases with increasing calcination temperature and H2O/HCN volume ratio. On catalyst calcined at 400°C, the efficiency reaches a maximum close to 99% at 480 min at a H2O/HCN volume ratio of 150. The HCN removal efficiency increases with increasing reaction temperature within the range of 100°C–500°C and reaches a maximum at 500°C. This trend may be attributed to the endothermicity of HCN hydrolysis; increasing the temperature favors HCN hydrolysis. However, the removal efficiencies increases very few at 500°C compared with that at 400°C. To conserve energy in industrial operations, 400°C is deemed as the optimal reaction temperature. The presence of CO facilitates HCN hydrolysis andincreases NH3 production. O2 substantially increases the HCN removal efficiency and NOx production but decreases NH3 production.  相似文献   

17.
磁性纳米粒子是一种环境友好型吸附剂,广泛应用于废水中重金属的处理。目前,有不少关于纳米粒子毒性的研究,但对处理后的纳米粒子和金属的复合物的毒性却鲜有研究。本文利用纳米四氧化三铁(MNPs)吸附水中的铬离子,以人胚胎肾细胞HEK293为生物模型,通过测定细胞活力、活性氧含量以及细胞摄取量等试验,评估磁性纳米四氧化三铁吸附六价铬后的复合产物对HEK293细胞的毒性。实验结果显示:在本实验浓度和作用时间下,Cr(Ⅵ)离子能够进入细胞,产生氧化应激,并引起细胞毒性;与Cr(Ⅵ)离子相比,磁性纳米四氧化三铁吸附Cr(Ⅵ)后的修复产物MNPs/Cr(Ⅵ)对HEK293细胞无明显毒性效应,MNPs/Cr(Ⅵ)复合物在细胞内的摄取极少,只有极少数颗粒通过内吞的方式进入细胞,且没有进入细胞核内。因此,在本实验的作用浓度和时间下,利用MNPs吸附水环境中Cr(Ⅵ)后的复合物对HEK293细胞没有明显毒性,本研究为深化了解MNPs及其重金属复合物对环境的影响提供了实验依据和参考价值。  相似文献   

18.
Manganese oxide(MnO2) exhibits excellent activity for volatile organic compound oxidation.However,it is currently unknown whether lattice oxygen or adsorbed oxygen is more conducive to the progress of the catalytic reaction.In this study,novel hollow highly dispersed Pt/Copper modified-MnO2 catalysts were fabricated.Cu2+ was stabilized into the δ-MnO2 cladding substituting original K+,which produced lattice defects and enhance the content of...  相似文献   

19.
许多具有氧化作用的空气污染物,均能使细胞产生氧化损伤,使胸腺基质淋巴生成素(thymic stromal lymphopoietin,TSLP)含量上升。而TSLP是一种启动过敏性炎症的重要因子,会导致哮喘等疾病发生率的上升。在本研究中用过氧化氢(H_2O_2)模拟具有氧化作用的空气污染物进行染毒,研究细胞氧化应激水平的变化,并讨论还原型谷胱甘肽(GSH)对细胞受氧化损伤的保护作用。将大鼠支气管上皮细胞(RTE)分组培养,每组设置6个平行实验,分别用低、中、高剂量H_2O_2染毒3 h;高剂量设置1个重复,作为保护组,在染毒前用GSH保护2 h。结果显示,高剂量组H_2O_2(3.2 mmol·L~(~(-1)))染毒的细胞,其细胞活力下降(P0.01),丙二醛(MDA)水平上升(P0.01),TSLP水平上升(P0.05),与之相比,用GSH保护后的同剂量染毒组,上述指标得到全面缓解(P0.01)。这表明高浓度的H_2O_2会损伤细胞活力,并使MDA及TSLP水平上升,而GSH对TSLP及MDA的升高有极显著的抑制作用,即对细胞有一定的保护作用。  相似文献   

20.
为探讨老化时间对TiO_2纳米颗粒(nanoparticles,NPs)生物有效性的影响,研究了不同老化时间的Ti O_2NPs(0~120 d)对玉米幼苗生长的影响、在玉米体内的吸收及其在植株不同部位的存在位点等。研究发现,不同浓度的TiO_2NPs(1 000 mg·kg~(-1)和2 000 mg·kg~(-1))加入到土壤中,对玉米幼苗干鲜重没有明显的影响,但老化时间小于60 d时,对玉米幼苗株高有一定的抑制效应,老化60 d之后,随着老化时间的继续延长,毒性逐渐降低,最后趋于稳定。老化60 d时,TiO_2NPs处理的玉米幼苗根冠增大,玉米幼苗体内产生H2O_2的累积。在Ti O_2老化土壤中生长的玉米幼苗根系和地上部均有Ti的累积,1 000 mg·kg~(-1)的TiO_2NPs在玉米幼苗根部的生物累积系数达到35.4%,在地上部为13.6%,在玉米植株体内的转运系数为0.38;通过TEM观察,TiO_2NPs可以进入到玉米幼苗体内,并存在于根细胞的细胞质和叶绿体膜上,在叶片细胞的液泡和细胞核中也发现有TiO_2NPs的存在。上述研究结果为客观评价TiO_2NPs的生态风险提供了有用信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号