首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 536 毫秒
1.
• A survey on individual’s perception of SARS-CoV-2 transmission was conducted. • Waterborne transmission risks are far less perceived by individuals. • Precautions of preventing wastewater mediated transmission are implemented. • The precautions for wastewater transmission are less favored by the public. • Education level differs the most regarding to waterborne transmission perception. SARS-CoV-2 has been detected in various environmental media. Community and individual-engaged precautions are recommended to stop or slow environmentally-mediated transmission. To better understand the individual’s awareness of and precaution to environmental dissemination of SARS-CoV-2, an online survey was conducted in Beijing during March 14–25, 2020. It is found that the waterborne (especially wastewater mediated) spreading routes are far less perceived by urban communities. The precautions for wastewater transmission are less favored by the public than airborne and solid waste mediated spreading routes. Such risk communication asymmetry in waterborne transmission will be further enlarged in places with fragile water system. Furthermore, education level is the most significant attribution (Sig.<0.05) that causes the difference of awareness and precautions of the waterborne transmission among the respondents, according to the variance analysis results. Our survey results emphasize the urgent need for evidence-based, multifactorial precautions for current and future outbreaks of COVID-19.  相似文献   

2.
• Economics of food waste treatment projects at 29 pilot cities in China was examined. • Roles of location, population size, processing technique, and income were studied. • Economic benefits were limited with a profit to cost ratio of 0.08±0.37. • Service population size affects construction economics significantly (P = 0.016). • Choice of food waste processing technique affects operating economics notably. This study examines the economic benefits of food waste treatment projects in China and factors affecting them. National-level pilot projects for food waste treatment located in 29 cities were selected as samples. The economics of food waste recycling from the investors’ perspective, in terms of investment during the construction phase and cost and benefit during the operation phase, was assessed. Results indicate that the average tonnage investment of food waste treatment projects was RMB 700.0±188.9 thousand yuan, with a profit to cost ratio of 0.08±0.37. This ratio increased to 0.95±0.57 following the application of government subsidies. It highlights the limited economic benefits of food waste treatment facilities, which rely on government subsidies to maintain their operations in China. Further analysis using a multi-factor analysis model revealed that regional location, service population size, processing techniques, and urban income exerted varying impacts on the economy of food waste treatment. Population size exerted the highest impact (P = 0.016) during the construction stage, and processing techniques notably influenced the project economy during the operation stage. The study highlights the need to prioritize service population size and processing techniques during economic decision-making and management of food waste recycling projects. The results of this study can serve as a valuable practical reference for guiding future policies regarding food waste treatment and related planning.  相似文献   

3.
• Transformation of agro-industrial waste to value-added material via green chemistry. • Orange peel is valorized into fluorescent nanodiamond-like carbon (fNDC) sensor. • fNDC detects potentially hazardous drug atropine sulfate (AS). • fNDC recognizes AS in biological fluids and pharmaceuticals. • fNDC assures applications in clinical and forensic toxicology. Millions of tonnes of agro-industrial waste are generated each year globally, with the vast majority of it going untreated, underutilized, and disposed of by burning or landfilling, causing severe environmental distress and economic downturn. A practical solution to this global issue is to use green chemistry to convert this waste into value-added products. Accordingly, in the present study, agro-industrial orange peel waste was valorized into fluorescent nanodiamond-like carbon sensor via a green route involving hydrothermal treatment of microwave carbonized orange peel waste. The developed sensor, used for the fluorescence detection of potentially hazardous drug atropine sulfate, exhibits unique dual linearity over concentration ranges of 300 nM to 1 M and from 1 M to 10 M, as well as ultra-low sensitivity of 34.42 nM and 356.46 nM, respectively. Additionally, the sensor demonstrates excellent reproducibility, high stability, and satisfactory recovery when used to identify and quantify atropine sulfate in biological samples and commercially available pharmaceuticals, indicating promising multidisciplinary applications.  相似文献   

4.
• Aerosol transmission is an indispensable route of COVID-19 spread. • Different outbreak sites have different epidemiologic feature. • SRAS-CoV-2 can exist for a long time in aerosol. • SRAS-CoV-2 RNA can be detected in aerosol in diverse places. • Some environmental factors can impact SARS-CoV-2 transportation in aerosol. Patients with COVID-19 have revealed a massive outbreak around the world, leading to widespread concerns in global scope. Figuring out the transmission route of COVID-19 is necessary to control further spread. We analyzed the data of 43 patients in Baodi Department Store (China) to supplement the transmission route and epidemiological characteristics of COVID-19 in a cluster outbreak. Incubation median was estimated to endure 5.95 days (2–13 days). Almost 76.3% of patients sought medical attention immediately upon illness onset. The median period of illness onset to hospitalization and confirmation were 3.96 days (0–14) and 5.58 days (1–21), respectively. Patients with different cluster case could demonstrate unique epidemiological characteristics due to the particularity of outbreak sites. SRAS-CoV-2 can be released into the surrounding air through patient’s respiratory tract activities, and can exist for a long time for long-distance transportation. SRAS-CoV-2 RNA can be detected in aerosol in different sites, including isolation ward, general ward, outdoor, toilet, hallway, and crowded public area. Environmental factors influencing were analyzed and indicated that the SARS-CoV-2 transportation in aerosol was dependent on temperature, air humidity, ventilation rate and inactivating chemicals (ozone) content. As for the infection route of case numbers 2 to 6, 10, 13, 16, 17, 18, 20 and 23, we believe that aerosol transmission played a significant role in analyzing their exposure history and environmental conditions in Baodi Department Store. Aerosol transmission could occur in some cluster cases when the environmental factors are suitable, and it is an indispensable route of COVID-19 spread.  相似文献   

5.
• Municipal solid waste (MSW) was fermented, screened, gasified, then co-processed. • Co-processing MSW in cement kilns could cause excessive pollutant emissions. • Bypass flue gas can be disposed of through the main flue system. • Popular MSW co-processing methods do not affect cement quality. Cement kiln co-processing techniques have been developed in the past 20 years in China, and more than 60 factories now use fermentation, screening, and gasification pre-treatment techniques to co-process municipal solid waste (MSW). There three complete MSW pre-treatment techniques, co-processing procedures, and environmental risk assessments have been described in few publications. In this study, we assessed the effectiveness of each technique. The results suggested that the pollutant content released by each pre-treatment technology was lower than the emission standard. To reveal the mechanisms of pollutant migration and enrichment, the substances in the kiln and kiln products are investigated. The input of co-processing materials (Co-M) produced by fermentation caused formation of polychlorinated dibenzo-p-dioxins and dibenzofuran (PCDD/Fs) in the bypass flue gas (By-gas) in excess of the regulatory standard. The Co-M input produced by the screening and gasifier technologies caused the total organic carbon (TOC) concentration to exceed the standard. In addition, the NOx, TOC, and PCDD/Fs in the By-gas exceeded the regulatory standard. Raw meal was the primary chlorine and heavy metals input stream, and clinker (CK) and cement kiln dust (CKD) accounted for>90% of the total chlorine output stream. Flue gas and CKD were the primary volatile heavy metal (Hg) output streams. Greater than 70% of the semi-volatile heavy metals (Cd, Pb, Tl and Se) distributed in hot raw meal and bypass cement kiln dust. The low-volatility heavy metals were concentrated in the CK. These results indicated that co-processing techniques used in China still require improvement.  相似文献   

6.
7.
• Copyrights on electronic products are impediments in promoting circular economy. • Manufacturers antagonize refurbishment and remanufacturing to maximize profit. • International harmonization of copyright laws will aid repair and remanufacture. • Blockchain–digital immutable ledgers–can promote trust among stakeholders. The concept of zero waste is an ideal situation that will require different solutions for different categories of waste. Electronic waste (E-waste), the fastest growing category of solid hazardous waste presents various unique challenges. Electronic product repair, reuse and remanufacture (3re) are crucial for effective source reduction of E-waste and the integration of the electronics industry into a circular or zero-waste economy framework. Increasingly, 3re implementation is restricted by regulatory difficulties, particularly the invocation of copyright laws. Here, we use the examples of electronic printer cartridges and restored compact discs (CDs) to identify the challenges and to explore solutions for managing the risks associated with E-waste through circular economy and the opportunities presented by innovative Blockchain solutions. A set of international consensuses on judicial definitions, such as 3re, refurbish fake/counterfeit product and copyright exhaustion, are proposed to accelerate source reduction in E-waste management toward the goal of zero waste.  相似文献   

8.
• Emission of microbe from local environments is a main source of bioaerosols. • Regional transport is another important source of the bioaerosols. • There are many factors affecting the diffusion and transport of bioaerosols. • Source identification method uncovers the contribution of sources of bioaerosols. Recent pandemic outbreak of the corona-virus disease 2019 (COVID-19) has raised widespread concerns about the importance of the bioaerosols. They are atmospheric aerosol particles of biological origins, mainly including bacteria, fungi, viruses, pollen, and cell debris. Bioaerosols can exert a substantial impact on ecosystems, climate change, air quality, and public health. Here, we review several relevant topics on bioaerosols, including sampling and detection techniques, characterization, effects on health and air quality, and control methods. However, very few studies have focused on the source apportionment and transport of bioaerosols. The knowledge of the sources and transport pathways of bioaerosols is essential for a comprehensive understanding of the role microorganisms play in the atmosphere and control the spread of epidemic diseases associated with them. Therefore, this review comprehensively summarizes the up to date progress on the source characteristics, source identification, and diffusion and transport process of bioaerosols. We intercompare three types of diffusion and transport models, with a special emphasis on a widely used mathematical model. This review also highlights the main factors affecting the source emission and transport process, such as biogeographic regions, land-use types, and environmental factors. Finally, this review outlines future perspectives on bioaerosols.  相似文献   

9.
● A database of municipal solid waste (MSW) generation in China was established. ● An accurate MSW generation prediction model (WGMod) was constructed. ● Key factors affecting MSW generation were identified. ● MSW trends generation in Beijing and Shenzhen in the near future are projected. Integrated management of municipal solid waste (MSW) is a major environmental challenge encountered by many countries. To support waste treatment/management and national macroeconomic policy development, it is essential to develop a prediction model. With this motivation, a database of MSW generation and feature variables covering 130 cities across China is constructed. Based on the database, advanced machine learning (gradient boost regression tree) algorithm is adopted to build the waste generation prediction model, i.e., WGMod. In the model development process, the main influencing factors on MSW generation are identified by weight analysis. The selected key influencing factors are annual precipitation, population density and annual mean temperature with the weights of 13%, 11% and 10%, respectively. The WGMod shows good performance with R2 = 0.939. Model prediction on MSW generation in Beijing and Shenzhen indicates that waste generation in Beijing would increase gradually in the next 3–5 years, while that in Shenzhen would grow rapidly in the next 3 years. The difference between the two is predominately driven by the different trends of population growth.  相似文献   

10.
• TSIBF was composed of ABRS, FRS and HBRS. • THIBF can effectively remove various odors, VOCs and bioaerosols. • Different reaction segments in TSIBF can remove different types of odors and VOCs. • TSIBF can reduce the emission of bioaerosols through enhanced interception. A novel three-stage integrated biofilter (TSIBF) composed of acidophilic bacteria reaction segment (ABRS), fungal reaction segment (FRS) and heterotrophic bacteria reaction segment (HBRS) was constructed for the treatment of odors and volatile organic compounds (VOCs)from municipal solid waste (MSW) comprehensive treatment plants. The performance, counts of predominant microorganisms, and bioaerosol emissions of a full-scale TSIBF system were studied. High and stable removal efficiencies of hydrogen sulfide, ammonia and VOCs could be achieved with the TSIBF system, and the emissions of culturable heterotrophic bacteria, fungi and acidophilic sulfur bacteria were relatively low. The removal efficiencies of different odors and VOCs, emissions of culturable microorganisms, and types of predominant microorganisms were different in the ABRS, FRS and HBRS due to the differences in reaction conditions and mass transfer in each segment. The emissions of bioaerosols from the TSIBF depended on the capture of microorganisms and their volatilization from the packing. The rational segmentation, filling of high-density packings and the accumulation of the predominant functional microorganisms in each segment enhanced the capture effect of the bioaerosols, thus reducing the emissions of microorganisms from the bioreactor.  相似文献   

11.
• Punishments increase the participation probability of collectors and recyclers. • Policy-sponsored incentives make collectors and recyclers to participate earlier. • Recyclers are more sensitive to government punishments than collectors. Because governments have introduced policies involving incentives and penalties to promote the recycling of plastic waste, it is important to understand the impact of such incentives and penalties on the willingness of stakeholders to participate. In this study, government is included as a player, alongside waste collectors and recyclers, in a tripartite evolutionary game model of plastic waste recycling. The study explores the evolutionary equilibrium and performs a simulation analysis to elucidate the effect of government incentives and penalties on the willingness of other players to participate in recycling. Three conclusions are drawn from this research. First, an increase in incentives or in penalties increases the probability that collectors and recyclers will participate in the recycling process. Second, policy support incentives encourage collectors and recyclers to participate in plastic waste recycling earlier than subsidy incentives do. Finally, recyclers are more sensitive than collectors to government-imposed penalties.  相似文献   

12.
• The promoting effects for VFA generation follow the order of APG>SDBS>HTAB. • Surfactants improve the WAS solubilization/hydrolysis and acidification processes. • The VFA promotion is associated with surfactants’ distinctive characteristics. • Surfactants induce the enrichment of functional bacteria for VFA biosynthesis. • The vital genes for substrates delivery, metabolism, and VFA yields are upregulated. Surfactants were expected to exhibit positive effects on the waste activated sludge (WAS) disposal. However, the systematic comparison of different categories of surfactants on the WAS fermentation and the functional mechanisms, especially microbial metabolic traits, have not yet been precisely explored. This study revealed the positive effects of different surfactants on the volatile fatty acid (VFA) production, which followed the order of alkyl polysaccharides (APG)>sodium dodecylbenzene sulfonate (SDBS)>hexadecyl trimethyl ammonium bromide (HTAB). Mechanistic exploration found that the presence of different surfactants improved solubilization and hydrolysis steps, and then contributed to the subsequent acidification with different efficiencies. The functional microorganisms associated with VFA generation were enriched in surfactant-conditioned reactors. Metagenomic analysis further indicated that the key genes involved in the particular process of VFA generation were over-expressed. The simultaneous bioavailable substrate improvement, functional bacterial enrichment, and metabolic activity upregulation induced by different surfactants jointly contributed to VFA promotion during WAS fermentation. This study could provide a comprehensive realization of surfactants’ impacts on the WAS fermentation process, and more importantly, it reminded the public to discern the distinct interplaying effects induced by different chemicals in regulating the WAS disposal and resource recovery.  相似文献   

13.
• ARGs were detected in livestock manure, sludge, food waste and fermentation dregs. • The succession of microbial community is an important factor affecting ARGs. • Horizontal transfer mechanism of ARGs during composting should be further studied. Antibiotic resistance genes (ARGs) have been diffusely detected in several kinds of organic solid waste, such as livestock manure, sludge, antibiotic fermentation residues, and food waste, thus attracting great attention. Aerobic composting, which is an effective, harmless treatment method for organic solid waste to promote recycling, has been identified to also aid in ARG reduction. However, the effect of composting in removing ARGs from organic solid waste has recently become controversial. Thus, this article summarizes and reviews the research on ARGs in relation to composting in the past 5 years. ARGs in organic solid waste could spread in different environmental media, including soil and the atmosphere, which could widen environmental risks. However, the conventional composting technology had limited effect on ARGs removal from organic solid waste. Improved composting processes, such as hyperthermophilic temperature composting, could effectively remove ARGs, and the HGT of ARGs and the microbial communities are identified as vital influencing factors. Currently, during the composting process, ARGs were mainly affected by three response pathways, (I) “Microenvironment-ARGs”; (II) “Microenvironment-microorganisms-ARGs”; (III) “Microorganisms-horizontal gene transfer-ARGs”, respectively. Response pathway II had been studied the most which was believed that microbial community was an important factor affecting ARGs. In response pathway III, mainly believed that MGEs played an important role and paid less attention to eARGs. Further research on the role and impact of eARGs in ARGs may be considered in the future. It aims to provide support for further research on environmental risk control of ARGs in organic solid waste.  相似文献   

14.
• Physical, chemical and biological methods are explored for MPs removal. • Physical methods based on adsorption/filtration are mostly used for MPs removal. • Chemical methods of MPs removal work on coagulation and flocculation mechanism. • MBR technology has also shown the removal of MPs from water. • Global policy on plastic control is lacking. Microplastics are an emerging threat and a big challenge for the environment. The presence of microplastics (MPs) in water is life-threatening to diverse organisms of aquatic ecosystems. Hence, the scientific community is exploring deeper to find treatment and removal options of MPs. Various physical, chemical and biological methods are researched for MPs removal, among which few have shown good efficiency in the laboratory. These methods also have a few limitations in environmental conditions. Other than finding a suitable method, the creation of legal restrictions at a governmental level by imposing policies against MPs is still a daunting task in many countries. This review is an effort to place all effectual MP removal methods in one document to compare the mechanisms, efficiency, advantages, and disadvantages and find the best solution. Further, it also discusses the policies and regulations available in different countries to design an effective global policy. Efforts are also made to discuss the research gaps, recent advancements, and insights in the field.  相似文献   

15.
• Smart wetland was designed to treat wastewater according to zero waste principle. • The system included a dynamic roughing filter, Cyperus papyrus (L.) and zeolite. • It removed 98.8 and 99.8% of chemical and bacterial pollutants in 3 days. • The effluent reused to irrigate a landscape and the sludge recycled as fertilizer. • The plant biomass is a profitable resource for antibacterial and antioxidants. The present investigation demonstrates the synergistic action of using a sedimentation unit together with Cyperus papyrus (L.) wetland enriched with zeolite mineral in one-year round experiment for treating wastewater. The system was designed to support a horizontal surface flow pattern and showed satisfactory removal efficiencies for both physicochemical and bacteriological contaminants within 3 days of residence time. The removal efficiencies ranged between 76.3% and 98.8% for total suspended solids, turbidity, iron, biological oxygen demand, and ammonia. The bacterial indicators (total and fecal coliforms, as well as fecal streptococci) and the potential pathogens (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) showed removal efficiencies ranged between 96.9% and 99.8%. We expect the system to offer a smart management for every component according to zero waste principle. The treated effluent was reused to irrigate the landscape of pilot area, and the excess sludge was recycled as fertilizer and soil conditioner. The zeolite mineral did not require regeneration for almost 36 weeks of operation, and enhanced the density of shoots (14.11%) and the height of shoots (15.88%). The harvested plant biomass could be a profitable resource for potent antibacterial and antioxidant bioactive compounds. This could certainly offset part of the operation and maintenance costs and optimize the system implementation feasibility. Although the experiment was designed under local conditions, its results could provide insights to upgrade and optimize the performance of other analogous large-scale constructed wetlands.  相似文献   

16.
• Wide occurrence of Cr(VI) in US source drinking water. • A strong dependence of occurrence on groundwater sources. • Elucidate Redox and equilibrium chemistry of Cr(VI). • Sn(II)-based and TiO2-based reductive treatments hold extreme promise. • Key challenges include residual waste, Cr(VI) re-generation and socioeconomic drivers. Chromium (Cr) typically exists in either trivalent and hexavalent oxidation states in drinking water, i.e., Cr(III) and Cr(VI), with Cr(VI) of particular concern in recent years due to its high toxicity and new regulatory standards. This Account presented a critical analysis of the sources and occurrence of Cr(VI) in drinking water in the United States, analyzed the equilibrium chemistry of Cr(VI) species, summarized important redox reaction relevant to the fate of Cr(VI) in drinking water, and critically reviewed emerging Cr(VI) treatment technologies. There is a wide occurrence of Cr(VI) in US source drinking water, with a strong dependence on groundwater sources, mainly due to naturally weathering of chromium-containing aquifers. Challenges regarding traditional Cr(VI) treatment include chemical cost, generation of secondary waste and inadvertent re-generation of Cr(VI) after treatment. To overcome these challenges, reductive Cr(VI) treatment technologies based on the application of stannous tin or electron-releasing titanium dioxide photocatalyst hold extreme promise in the future. To moving forward in the right direction, three key questions need further exploration for the technology implementation, including effective management of residual waste, minimizing the risks of Cr(VI) re-occurrence downstream of drinking water treatment plant, and promote the socioeconomic drivers for Cr(VI) control in the future.  相似文献   

17.
• Quorum sensing enhancement and inhibition methods are summarized. • Effects of quorum sensing regulation on biofilm are reviewed. • Current knowledge gaps and research challenges are proposed. Quorum sensing (QS) plays an important role in microbial aggregation control. Recently, the optimization of biological waste treatment systems by QS regulation gained an increasing attention. The effects of QS regulation on treatment performances and biofilm were frequently investigated. To understand the state of art of QS regulation, this review summarizes the methods of QS enhancement and QS inhibition in biological waste treatment systems. Typical QS enhancement methods include adding exogenous QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods include additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. The specific improvements after applying these QS regulation methods in different treatment systems are concluded. In addition, the effects of QS regulation methods on biofilm in biological waste treatment systems are reviewed in terms of biofilm formation, extracellular polymeric substances production, microbial viability, and microbial community. In the end, the knowledge gaps in current researches are analyzed, and the requirements for future study are suggested.  相似文献   

18.
•Earthworms were able to convert green waste into more plant-available nutrients. •The part of heavy metals content increased in the compost added by earthworm. •The addition of SCB to GW did enhance earthworm biomass and humic acid content. •The resulting vermicomposts were characterized by neutral pH and lower EC value. Vermicomposting is a feasible method for disposing of lignocellulosic waste while generating a useful product. The current study assessed the potential of vermicomposting green waste mixed with sugarcane bagasse in proportions of 25%, 50%, and 75% (v:v, based on dry weight). The suitability was evaluated based on the agrochemical properties, earthworm biomass, and phytotoxicity. The final vermicomposts exhibited near-neutral pH values (7.1–7.6), and lower EC values (0.43–0.72 mS/cm) and C:N ratios (14.1–19.9).The content of available nutrients and CEC for all the vermicomposts exceeded those of the control compost (without earthworms). For vermicomposts, the average values of NO3-N, AP, AK, and CEC were 53, 517, 1362 mg/kg, and 158 cmol/kg, respectively. The total contents of heavy metals increased in all vermicompost treatments compared to control composts with the following average final percentages: Zn (2.0%), Cr (15.5%), Pb (23.4%), and Cu (44.3%), but these amounts were safe for application in agroforestry. The addition of sugarcane bagasse to green waste significantly increased the content of total humic substance, humic acid and urease activity, acid and alkaline phosphatase activity, and Eiseniafetida reproduction. The addition of 25% sugarcane bagasse to green waste decreased the toxicity to germinating seeds. These results revealed that vermicomposting is a feasible way to degrade green waste into a value-added chemical product.  相似文献   

19.
Ascomycota was the predominant phylum in sanitary landfill fungal communities. • Saprophytic fungi may be of special importance in landfill ecology. • Both richness and diversity of fungal community were lower in leachate than refuse. • Physical habitat partly contributed to the geographic variance of fungal community. • NO3 was considered the most significant abiotic factor shaping fungal community. Land filling is the main method to dispose municipal solid waste in China. During the decomposition of organic waste in landfills, fungi play an important role in organic carbon degradation and nitrogen cycling. However, fungal composition and potential functions in landfill have not yet been characterized. In this study, refuse and leachate samples with different areas and depths were taken from a large sanitary landfill in Beijing to identify fungal communities in landfills. In high-throughput sequencing of ITS region, 474 operational taxonomic units (OTUs) were obtained from landfill samples with a cutoff level of 3% and a sequencing depth of 19962. The results indicates that Ascomycota, with the average relative abundance of 84.9%, was the predominant phylum in landfill fungal communities. At the genus level, Family Hypocreaceae unclassified (15.7%), Fusarium (9.9%) and Aspergillus (8.3%) were the most abundant fungi found in the landfill and most of them are of saprotrophic lifestyle, which plays a big role in nutrient cycling in ecosystem. Fungi existed both in landfilled refuse and leachate while both the richness and evenness of fungal communities were higher in the former. In addition, fungal communities in landfilled refuse presented geographic variances, which could be partly attributed to physical habitat properties (pH, dissolved organic carbon, volatile solid, NH4+, NO2 and NO3), while NO3 was considered the most significant factor (p<0.05) in shaping fungal community.  相似文献   

20.
• Submerged arc plasma was introduced in terms of wastewater treatment. • Ozone oxidation was coupled with submerged arc plasma system. • Ozone was converted into O and O2 by submerged arc plasma. • Decomposition rate was accelerated by submerged arc plasma. • Introduction of ozone led to significant increase in mineralization. Submerged arc plasma technology was assessed for the removal of phenols from wastewater. The OH radicals generated from the boundary between the plasma and waste solution were considered as a significant factor on the degradation reaction. In this study, the effects of highly energetic electrons released from the submerged arc plasma were mainly studied. The highly energetic electrons directly broke the strong chemical bond and locally increased the reaction temperatures in solution. The effects of the submerged-arc plasma on the decomposition of phenol are discussed in terms of the input energy and initial concentration. The single use of submerged arc plasma easily decomposed the phenol but did not increase the mineralization efficiency. Therefore, the submerged arc plasma, coupled with the ozone injection, was investigated. The submerged arc plasma combined with ozone injection had a synergic effect, which led to significant improvements in mineralization with only a small increase in input energy. The decomposition mechanism of phenol by the submerged arc plasma with the ozone was analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号