首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
• Actual SAORs was determined using MLVSS and temperature. • Measured SAOR decreased with increasing MLVSS 1.1‒8.7 g/L. • Temperature coefficient (θ) decreased with increasing MLVSS. • Nitrification process was dynamically simulated based on laboratory-scale SBR tests. • A modified model was successfully validated in pilot-scale SBR systems. Measurement and predicted variations of ammonia oxidation rate (AOR) are critical for the optimization of biological nitrogen removal, however, it is difficult to predict accurate AOR based on current models. In this study, a modified model was developed to predict AOR based on laboratory-scale tests and verified through pilot-scale tests. In biological nitrogen removal reactors, the specific ammonia oxidation rate (SAOR) was affected by both mixed liquor volatile suspended solids (MLVSS) concentration and temperature. When MLVSS increased 1.6, 4.2, and 7.1-fold (1.3‒8.9 g/L, at 20°C), the measured SAOR decreased by 21%, 49%, and 56%, respectively. Thereby, the estimated SAOR was suggested to modify when MLVSS changed through a power equation fitting. In addition, temperature coefficient (θ) was modified based on MLVSS concentration. These results suggested that the prediction of variations ammonia oxidation rate in real wastewater treatment system could be more accurate when considering the effect of MLVSS variations on SAOR.  相似文献   

2.
• A novel conductive carbon black modified lead dioxide electrode is synthesized. • The modified PbO2 electrode exhibits enhanced electrochemical performances. • BBD method could predict optimal experiment conditions accurately and reliably. • The modified electrode possesses outstanding reusability and safety. The secondary pollution caused by modification of an electrode due to doping of harmful materials has long been a big concern. In this study, an environmentally friendly material, conductive carbon black, was adopted for modification of lead dioxide electrode (PbO2). It was observed that the as-prepared conductive carbon black modified electrode (C-PbO2) exhibited an enhanced electrocatalytical performance and more stable structure than a pristine PbO2 electrode, and the removal efficiency of metronidazole (MNZ) and COD by a 1.0% C-PbO2 electrode at optimal conditions was increased by 24.66% and 7.01%, respectively. Results revealed that the electrochemical degradation of MNZ wastewater followed pseudo-first-order kinetics. This intimates that the presence of conductive carbon black could improve the current efficiency, promote the generation of hydroxyl radicals, and accelerate the removal of MNZ through oxidation. In addition, MNZ degradation pathways through a C-PbO2 electrode were proposed based on the identified intermediates. To promote the electrode to treat antibiotic wastewater, optimal experimental conditions were predicted through the Box-Behnken design (BBD) method. The results of this study suggest that a C-PbO2 electrode may represent a promising functional material to pretreat antibiotic wastewaters.  相似文献   

3.
张晓艳  张广斌  纪洋  马静  徐华  蔡祖聪 《生态环境》2010,19(11):2540-2545
采用静态箱/气象色谱法——田间原位观测和室内培养试验连续一年研究了冬季淹水稻田的CH4产生潜力、氧化潜力和排放通量,以探讨冬季淹水稻田CH4产生、氧化和排放的季节变化规律及其影响因素。结果表明:0~251 d(d表示淹水后天数),CH4产生潜力逐渐增大,到251 d达最大值,之后逐渐减小;0~204 d,CH4氧化潜力变化较小,但到235 d急剧增至最大值,随后逐渐减小;0~169 d,稻田几乎没有CH4排放,192 d才开始有较明显的CH4排放,到230 d达最大值,为80.2 mg.m-2.h-1,随后逐渐减小,331 d出现一个CH4排放高峰。全观测期内CH4排放量为69.9 g.m-2,其中非水稻生长期排放6.7 g.m-2,占总量的9.5%。全观测期内CH4产生潜力与土温及土壤Eh均无显著相关性;全观测期内CH4氧化潜力与土温极显著正相关(P〈0.01),水稻生长期CH4氧化潜力与土壤中氨氮含量呈极显著正相关(P〈0.01);全观测期内稻田CH4排放与土温和CH4产生潜力两个因素均显著正相关(P〈0.05)而与土壤Eh呈显著负相关(P〈0.05)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号