首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
SSR addition upgraded VFAs production from WAS. Structure modification by pretreatments led to performance distinctions. Distinctions in microbial community was observed by pretreatments selection. Up to 0.49‒0.65 billion €/year of market value potential was preliminary estimated. Conditioning of extra carbon sources has been widely reported to facilitate fermentation of waste activated sludge (WAS). Soy sauce residue (SSR) was a relatively untapped carbon source for sludge conditioning. This batch study aimed to evaluate the possible implementation of SSR for volatile fatty acids (VFAs) production from WAS. To upgrade the bioavailability of feedstock, three typical pretreatment methods were conducted, i.e., ammonium hydroxide (AH), sulfuric acids (SA) and thermal assisted alkaline (TA). AH pretreated test (AH-PT) outperformed due to a relatively strong structure decomposition of cellulosic materials as revealed by infrared spectroscopic analysis and crystal index. As a result, performed a high hydrolysis rate of 4449 mg COD/d, 1.12-1.23-fold higher than that in TA and SA pretreated tests (TA-PT and SA-PT), and 7.8-fold higher than that in the Control test. Meanwhile, a volatile fatty acids (VFAs) contribution of 401.2 mg COD/g SSR∙L and a maximum acidification rate of 3.59 d-1 was recorded, with a high sum proportion of mall molecular acetic and propionic 82.2%, 11% ‒70% increase over the other three tests. Besides, speciation process characterized with functional genus differentiation was identified by microbial diversity and distribution investigation and canonical correspondence analysis (CCA). Finally, a potential market value of 0.49‒0.65 Billion €/year was preliminary estimated, showing promise of resource recovery from both WAS and SSR instead of extensive disposal.  相似文献   

2.
Effect of pH ranging from 4.0 to 11.0 on co-fermentation of waste activated sludge (WAS) with food waste for short-chain fatty acids (SCFAs) production at ambient temperature was investigated in this study. Experimental results showed that the addition of food waste significantly improved the performance of WAS fermentation system, which resulted in the increases of SCFAs production and substrate reduction. The SCFAs production at pH 6.0, 7.0, 8.0, and 9.0 and fermentation time of 4 d was respectively 5022.7, 6540.5, 8236.6, and 7911.7 mg COD·L-1, whereas in the blank tests (no pH adjustment, pH 8.0 (blank test 1), no food waste addition, pH 8.0 (blank test 2), and no WAS addition (blank test 3)) it was only 1006.9, 971.1, and 1468.5 mg COD·L-1, respectively. The composition of SCFAs at pH from 6.0 to 9.0 was also different from other conditions and propionic acid was the most prevalent SCFA, which was followed by acetic and n-butyric acids, while acetic acid was the top product under other conditions. At pH 8.0 a higher volatile suspended solids (VSS) reduction of 16.6% for the mixture of WAS and food waste than the sole WAS indicated a synergistic effect existing in fermentation system with WAS and food waste. The influence of pH on the variations of nutrient content was also studied during anaerobic fermentation of the mixture of WAS and food waste at different pH conditions. The release of NH4+-N increased with fermentation time at all pH values investigated except 4.0, 5.0 and in blank test one. The concentrations of soluble phosphorus at acidic pHs and in the blank test one were higher than those obtained at alkaline pHs. Ammonia and phosphorus need to be removed before the SCFAs-enriched fermentation liquid from WAS and food waste was used as the carbon source.  相似文献   

3.
• The promoting effects for VFA generation follow the order of APG>SDBS>HTAB. • Surfactants improve the WAS solubilization/hydrolysis and acidification processes. • The VFA promotion is associated with surfactants’ distinctive characteristics. • Surfactants induce the enrichment of functional bacteria for VFA biosynthesis. • The vital genes for substrates delivery, metabolism, and VFA yields are upregulated. Surfactants were expected to exhibit positive effects on the waste activated sludge (WAS) disposal. However, the systematic comparison of different categories of surfactants on the WAS fermentation and the functional mechanisms, especially microbial metabolic traits, have not yet been precisely explored. This study revealed the positive effects of different surfactants on the volatile fatty acid (VFA) production, which followed the order of alkyl polysaccharides (APG)>sodium dodecylbenzene sulfonate (SDBS)>hexadecyl trimethyl ammonium bromide (HTAB). Mechanistic exploration found that the presence of different surfactants improved solubilization and hydrolysis steps, and then contributed to the subsequent acidification with different efficiencies. The functional microorganisms associated with VFA generation were enriched in surfactant-conditioned reactors. Metagenomic analysis further indicated that the key genes involved in the particular process of VFA generation were over-expressed. The simultaneous bioavailable substrate improvement, functional bacterial enrichment, and metabolic activity upregulation induced by different surfactants jointly contributed to VFA promotion during WAS fermentation. This study could provide a comprehensive realization of surfactants’ impacts on the WAS fermentation process, and more importantly, it reminded the public to discern the distinct interplaying effects induced by different chemicals in regulating the WAS disposal and resource recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号