首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
• Nano zero-valent manganese (nZVMn, Mn0) is synthesized via borohydrides reduction. • Mn0 combined with persulfate/hypochlorite is effective for Tl removal at pH 6-12. • Mn0 can activate persulfate to form hydroxyl and sulfate radicals. • Oxidation-induced precipitation and surface complexation contribute to Tl removal. • Combined Mn0-oxidants process is promising in the environmental field. Nano zero-valent manganese (nZVMn, Mn0) was prepared through a borohydride reduction method and coupled with different oxidants (persulfate (S2O82), hypochlorite (ClO), or hydrogen peroxide (H2O2)) to remove thallium (Tl) from wastewater. The surface of Mn0 was readily oxidized to form a core-shell composite (MnOx@Mn0), which consists of Mn0 as the inner core and MnOx (MnO, Mn2O3, and Mn3O4) as the outer layer. When Mn0 was added alone, effective Tl(I) removal was achieved at high pH levels (>12). The Mn0-H2O2 system was only effective in Tl(I) removal at high pH (>12), while the Mn0-S2O82 or Mn0-ClO system had excellent Tl(I) removal (>96%) over a broad pH range (4–12). The Mn0-S2O82 oxidation system provided the best resistance to interference from an external organic matrix. The isotherm of Tl(I) removal through the Mn0-S2O82 system followed the Freundlich model. The Mn0 nanomaterials can activate persulfate to produce sulfate radicals and hydroxyl radicals. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy suggested that oxidation-induced precipitation, surface adsorption, and electrostatic attraction are the main mechanisms for Tl(I) removal resulting from the combination of Mn0 and oxidants. Mn0 coupled with S2O82/ClO is a novel and effective technique for Tl(I) removal, and its application in other fields is worthy of further investigation.  相似文献   

2.
• The MCNZVI is prepared as an interesting material for PS activation. • Graphitized carbon shells facilitate electron transfer from Fe0. • The MCNZVI exhibits excellent performance to degrade RB5 by 1O2. • The MCNZVI has high stability and reusability in the oxidation system. High-efficiency and cost-effective catalysts with available strategies for persulfate (PS) activation are critical for the complete mineralization of organic contaminants in the environmental remediation and protection fields. A nanoscale zero-valent iron-embedded modified mesoporous carbon (MCNZVI) with a core-shell structure is synthesized using the hydrothermal synthesis method and high-temperature pyrolysis. The results showed that nZVI could be impregnated within mesoporous carbon frameworks with a comparatively high graphitization degree, rich nitrogen doping content, and a large surface area and pore volume. This material was used as a persulfate activator for the oxidation removal of Reactive Black 5 (RB5). The effects of the material dosage, PS concentration, pH, and some inorganic anions (i.e., Cl, SO42) on RB5 degradation were then investigated. The highest degradation efficiency (97.3%) of RB5 was achieved via PS (20 mmol/L) activation by the MCNZVI (0.5 g/L). The pseudo-first-order kinetics (k = 2.11 × 102 min1) in the MCNZVI/PS (0.5 g/L, 20 mmol/L) was greater than 100 times than that in the MCNZVI and PS. The reactive oxygen species (ROS), including 1O2, SO4·, HO·, and ·O2, were generated by PS activation with the MCNZVI. Singlet oxygen was demonstrated to be the primary ROS responsible for the RB5 degradation. The MCNZVI could be reused and regenerated for recycling. This work provides new insights into PS activation to remove organic contamination.  相似文献   

3.
• Microbes enhance denitrification under varying DO concentrations and SIF dosages. • Abiotic nitrate reduction rates are proportional to SIF age and dosage. • Over 80% of the simultaneously loaded NO3-N and PO43 is removed biologically. This study focuses on identifying the factors under which mixed microbial seeds assist bio-chemical denitrification when Scrap Iron Filings (SIF) are used as electron donors and adsorbents in low C/N ratio waters. Batch studies were conducted in abiotic and biotic reactors containing fresh and aged SIF under different dissolved oxygen concentrations with NO3-N and/or PO43- influent(s) and their nitrate/phosphate removal and by-product formations were studied. Batch reactors were seeded with a homogenized mixed microbial inoculum procured from natural sludges which were enriched over 6 months under denitrifying conditions in the presence of SIF. Results indicated that when influent containing 40 mg/L of NO3-N was treated with 5 g SIF, 79.9% nitrate reduction was observed in 8 days abiotically and 100% removal was accomplished in 20 days when the reactor was seeded. Both abiotic and seeded reactors removed more than 92% PO43 under high DO conditions in 12 days. Abiotic and biochemical removal of NO3-N and abiotic removal of PO43 were higher under independent NO3-N/PO43 loading, while 99% PO43- was removed biochemically under combined NO3-N and PO43 loading. This study furthers the understandings of nitrate and phosphate removal in Zero Valent Iron (ZVI) assisted mixed microbial systems to encourage the application of SIF-supported bio-chemical processes in the simultaneous removals of these pollutants.  相似文献   

4.
• Cu0.15-ACF performs the best for H2S and PH3 simultaneous removal. • 550°C and 90°C are separately calcination and reaction temperatures. • The reason why Cu0.15/ACF shows better performance was found. • The accumulation of H2PO4 and SO42−(H2O)6 is the deactivation cause of Cu0.15/ACF. Poisonous gases, such as H2S and PH3, produced by industrial production harm humans and damage the environment. In this study, H2S and PH3 were simultaneously removed at low temperature by modified activated carbon fiber (ACF) catalysts. We have considered the active metal type, content, precursor, calcination, and reaction temperature. Experimental results exhibited that ACF could best perform by loading 15% Cu from nitrate. The optimized calcination temperature and reaction temperature separately were 550°C and 90°C. Under these conditions, the most removal capacity could reach 69.7 mg/g and 132.1 mg/g, respectively. Characterization results showed that moderate calcination temperature (550°C) is suitable for the formation of the copper element on the surface of ACF, lower or higher temperature will generate more cuprous oxide. Although both can exhibit catalytic activity, the role of the copper element is significantly greater. Due to the exceptional dispersibility of copper (oxide), the ACF can still maintain the advantages of larger specific surface area and pore volume after loading copper, which is the main reason for better performance of related catalysts. Finally, increasing the copper loading amount can significantly increase the crystallinity and particle size of copper (oxide) on the ACF, thereby improving its catalytic performance. In situ IR found that the reason for the deactivation of the catalyst should be the accumulation of generated H2PO4 and SO42−(H2O)6 which could poison the catalyst.  相似文献   

5.
• An innovative bubble column tower BPE was designed to treat the black-odorous water. • PO43, S2 and turbidity were removed, and dissolved oxygen was enriched in the BPE. • An aluminum bipolar electrode gave the best oxygen enrichment and pollutant removal. • Changes of microorganisms confirmed the improvement in water quality achieved. The large amount of municipal wastewater discharged into urban rivers sometimes exceeds the rivers’ self-purification capacity leading to black-odorous polluted water. Electro-flocculation has emerged as a powerful remediation technology. Electro-flocculation in a bubble column tower with a bipolar electrode (BPE) was tested in an attempt to overcome the high resistance and weak gas-floatation observed with a monopolar electrode (MPE) in treating such water. The BPE reactor tested had a Ti/Ta2O5-IrO2 anode and a graphite cathode with an iron or aluminum bipolar electrode suspended between them. It was tested for its ability to reduce turbidity, phosphate and sulphion and to increase the concentration of dissolved oxygen. The inclusion of the bipolar electrode was found to distinctly improved the system’s conductivity. The system’s electro-flocculation and electrical floatation removed turbidity, phosphate and sulphion completely, and the dissolved oxygen level improved from 0.29 to 6.28 mg/L. An aluminum bipolar electrode performed better than an iron one. Changes in the structure of the microbial community confirmed a significant improvement in water quality.  相似文献   

6.
• Forward osmosis (FO) coupled with chemical softening for CCI ROC minimization • Effective removal of scale precursor ions by lime-soda ash softening • Enhanced water recovery from 54% to 86% by mitigation of FO membrane scaling • High-purity CaCO3 was recovered from the softening sludge • Membrane cleaning efficiency of 88.5% was obtained by EDTA for softened ROC Reverse osmosis (RO) is frequently used for water reclamation from treated wastewater or desalination plants. The RO concentrate (ROC) produced from the coal chemical industry (CCI) generally contains refractory organic pollutants and extremely high-concentration inorganic salts with a dissolved solids content of more than 20 g/L contributed by inorganic ions, such as Na+, Ca2+, Mg2+, Cl, and SO42. To address this issue, in this study, we focused on coupling forward osmosis (FO) with chemical softening (FO-CS) for the volume minimization of CCI ROC and the recovery of valuable resources in the form of CaCO3. In the case of the real raw CCI ROC, softening treatment by lime-soda ash was shown to effectively remove Ca2+/Ba2+ (>98.5%) and Mg2+/Sr2+/Si (>80%), as well as significantly mitigate membrane scaling during FO. The softened ROC and raw ROC corresponded to a maximum water recovery of 86% and 54%, respectively. During cyclic FO tests (4 × 10 h), a 27% decline in the water flux was observed for raw ROC, whereas only 4% was observed for softened ROC. The cleaning efficiency using EDTA was also found to be considerably higher for softened ROC (88.5%) than that for raw ROC (49.0%). In addition, CaCO3 (92.2% purity) was recovered from the softening sludge with an average yield of 5.6 kg/m3 treated ROC. This study provides a proof-of-concept demonstration of the FO-CS coupling process for ROC volume minimization and valuable resources recovery, which makes the treatment of CCI ROC more efficient and more economical.  相似文献   

7.
• BiVO4/Fe3O4/rGO has excellent photocatalytic activity under solar light radiation. • It can be easily separated and collected from water in an external magnetic field. • BiVO4/Fe3O4/0.5% rGO exhibited the highest RhB removal efficiency of over 99%. • Hole (h+) and superoxide radical (O2) dominate RhB photo-decomposition process. • The reusability of this composite was confirmed by five successive recycling runs. Fabrication of easily recyclable photocatalyst with excellent photocatalytic activity for degradation of organic pollutants in wastewater is highly desirable for practical application. In this study, a novel ternary magnetic photocatalyst BiVO4/Fe3O4/reduced graphene oxide (BiVO4/Fe3O4/rGO) was synthesized via a facile hydrothermal strategy. The BiVO4/Fe3O4 with 0.5 wt% of rGO (BiVO4/Fe3O4/0.5% rGO) exhibited superior activity, degrading greater than 99% Rhodamine B (RhB) after 120 min solar light radiation. The surface morphology and chemical composition of BiVO4/Fe3O4/rGO were studied by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The free radicals scavenging experiments demonstrated that hole (h+) and superoxide radical (O2) were the dominant species for RhB degradation over BiVO4/Fe3O4/rGO under solar light. The reusability of this composite catalyst was also investigated after five successive runs under an external magnetic field. The BiVO4/Fe3O4/rGO composite was easily separated, and the recycled catalyst retained high photocatalytic activity. This study demonstrates that catalyst BiVO4/Fe3O4/rGO possessed high dye removal efficiency in water treatment with excellent recyclability from water after use. The current study provides a possibility for more practical and sustainable photocatalytic process.  相似文献   

8.
• Fe(III) accepted the most electrons from organics, followed by NO3, SO42‒, and O2. • The electrons accepted by SO42‒ could be stored in the solid AVS, FeS2-S, and S0. • The autotrophic denitrification driven by solid S had two-phase characteristics. • A conceptual model involving electron acceptance, storage, and donation was built. • S cycle transferred electrons between organics and NO3 with an efficiency of 15%. A constructed wetland microcosm was employed to investigate the sulfur cycle-mediated electron transfer between carbon and nitrate. Sulfate accepted electrons from organics at the average rate of 0.84 mol/(m3·d) through sulfate reduction, which accounted for 20.0% of the electron input rate. The remainder of the electrons derived from organics were accepted by dissolved oxygen (2.6%), nitrate (26.8%), and iron(III) (39.9%). The sulfide produced from sulfate reduction was transformed into acid-volatile sulfide, pyrite, and elemental sulfur, which were deposited in the substratum, storing electrons in the microcosm at the average rate of 0.52 mol/(m3·d). In the presence of nitrate, the acid-volatile and elemental sulfur were oxidized to sulfate, donating electrons at the average rate of 0.14 mol/(m3·d) and driving autotrophic denitrification at the average rate of 0.30 g N/(m3·d). The overall electron transfer efficiency of the sulfur cycle for autotrophic denitrification was 15.3%. A mass balance assessment indicated that approximately 50% of the input sulfur was discharged from the microcosm, and the remainder was removed through deposition (49%) and plant uptake (1%). Dominant sulfate-reducing (i.e., Desulfovirga, Desulforhopalus, Desulfatitalea, and Desulfatirhabdium) and sulfur-oxidizing bacteria (i.e., Thiohalobacter, Thiobacillus, Sulfuritalea, and Sulfurisoma), which jointly fulfilled a sustainable sulfur cycle, were identified. These results improved understanding of electron transfers among carbon, nitrogen, and sulfur cycles in constructed wetlands, and are of engineering significance.  相似文献   

9.
• CW-Fe allowed a high-performance of NO3-N removal at the COD/N ratio of 0. • Higher COD/N resulted in lower chem-denitrification and higher bio-denitrification. • The application of s-Fe0 contributed to TIN removal in wetland mesocosm. • s-Fe0 changed the main denitrifiers in wetland mesocosm. Sponge iron (s-Fe0) is a porous metal with the potential to be an electron donor for denitrification. This study aims to evaluate the feasibility of using s-Fe0 as the substrate of wetland mesocosms. Here, wetland mesocosms with the addition of s-Fe0 particles (CW-Fe) and a blank control group (CW-CK) were established. The NO3-N reduction property and water quality parameters (pH, DO, and ORP) were examined at three COD/N ratios (0, 5, and 10). Results showed that the NO3-N removal efficiencies were significantly increased by 6.6 to 58.9% in the presence of s-Fe0. NH4+-N was mainly produced by chemical denitrification, and approximately 50% of the NO3-N was reduced to NH4+-N, at the COD/ratio of 0. An increase of the influent COD/N ratio resulted in lower chemical denitrification and higher bio-denitrification. Although chemical denitrification mediated by s-Fe0 led to an accumulation of NH4+-N at COD/N ratios of 0 and 5, the TIN removal efficiencies increased by 4.5%‒12.4%. Moreover, the effluent pH, DO, and ORP values showed a significant negative correlation with total Fe and Fe (II) (P<0.01). High-throughput sequencing analysis indicated that Trichococcus (77.2%) was the most abundant microorganism in the CW-Fe mesocosm, while Thauera, Zoogloea, and Herbaspirillum were the primary denitrifying bacteria. The denitrifiers, Simplicispira, Dechloromonas, and Denitratisoma, were the dominant bacteria for CW-CK. This study provides a valuable method and an improved understanding of NO3-N reduction characteristics of s-Fe0 in a wetland mesocosm.  相似文献   

10.
• PANI/Ti(OH)n(4n)+ exhibited excellent adsorption capacity and reusability. • Adsorption sites of Cr(VI) were hydroxyl, amino/imino group and benzene rings. • Sb(V) was adsorbed mainly through hydrogen bonds and Ti-O-Sb. • The formation of Cr-O-Sb in dual system demonstrated the synergistic adsorption. • PANI/TiO2 was a potential widely-applied adsorbent and worth further exploring. Removal of chromium (Cr) and antimony (Sb) from aquatic environments is crucial due to their bioaccumulation, high mobility and strong toxicity. In this work, a composite adsorbent consisting of Ti(OH)n(4n)+ and polyaniline (PANI) was designed and successfully synthesized by a simple and eco-friendly method for the uptake of Cr(VI) and Sb(V). The synthetic PANI/TiO2 composites exhibited excellent adsorption capacities for Cr(VI) and Sb(V) (394.43 mg/g for Cr(VI) and 48.54 mg/g for Sb(V)), wide pH applicability and remarkable reusability. The adsorption of Cr(VI) oxyanions mainly involved electrostatic attraction, hydrogen bonding and anion-π interactions. Based on X-ray photoelectron spectroscopy and FT-IR analysis, the adsorption sites were shown to be hydroxyl groups, amino/imino groups and benzene rings. Sb(V) was adsorbed mainly through hydrogen bonds and surface complexation to form Ti-O-Sb complexes. The formation of Cr-O-Sb in the dual system demonstrated the synergistic adsorption of Cr(VI) and Sb(V). More importantly, because of the different adsorption sites, the adsorption of Cr(VI) and Sb(V) occurred independently and was enhanced to some extent in the dual system. The results suggested that PANI/TiO2 is a promising prospect for practical wastewater treatment in the removal of Cr(VI) and Sb(V) from wastewater owing to its availability, wide applicability and great reusability.  相似文献   

11.
• Bi2O3 cannot directly activate PMS. • Bi2O3 loading increased the specific surface area and conductivity of CoOOH. • Larger specific surface area provided more active sites for PMS activation. • Faster electron transfer rate promoted the generation of reactive oxygen species. 1O2 was identified as dominant ROS in the CoOOH@Bi2O3/PMS system. Cobalt oxyhydroxide (CoOOH) has been turned out to be a high-efficiency catalyst for peroxymonosulfate (PMS) activation. In this study, CoOOH was loaded on bismuth oxide (Bi2O3) using a facile chemical precipitation process to improve its catalytic activity and stability. The result showed that the catalytic performance on the 2,4-dichlorophenol (2,4-DCP) degradation was significantly enhanced with only 11 wt% Bi2O3 loading. The degradation rate in the CoOOH@Bi2O3/PMS system (0.2011 min1) was nearly 6.0 times higher than that in the CoOOH/PMS system (0.0337 min1). Furthermore, CoOOH@Bi2O3 displayed better stability with less Co ions leaching (16.4% lower than CoOOH) in the PMS system. These phenomena were attributed to the Bi2O3 loading which significantly increased the conductivity and specific surface area of the CoOOH@Bi2O3 composite. Faster electron transfer facilitated the redox reaction of Co (III) / Co (II) and thus was more favorable for reactive oxygen species (ROS) generation. Meanwhile, larger specific surface area furnished more active sites for PMS activation. More importantly, there were both non-radical (1O2) and radicals (SO4•, O2•, and OH•) in the CoOOH@Bi2O3/PMS system and 1O2 was the dominant one. In general, this study provided a simple and practical strategy to enhance the catalytic activity and stability of cobalt oxyhydroxide in the PMS system.  相似文献   

12.
Ascomycota was the predominant phylum in sanitary landfill fungal communities. • Saprophytic fungi may be of special importance in landfill ecology. • Both richness and diversity of fungal community were lower in leachate than refuse. • Physical habitat partly contributed to the geographic variance of fungal community. • NO3 was considered the most significant abiotic factor shaping fungal community. Land filling is the main method to dispose municipal solid waste in China. During the decomposition of organic waste in landfills, fungi play an important role in organic carbon degradation and nitrogen cycling. However, fungal composition and potential functions in landfill have not yet been characterized. In this study, refuse and leachate samples with different areas and depths were taken from a large sanitary landfill in Beijing to identify fungal communities in landfills. In high-throughput sequencing of ITS region, 474 operational taxonomic units (OTUs) were obtained from landfill samples with a cutoff level of 3% and a sequencing depth of 19962. The results indicates that Ascomycota, with the average relative abundance of 84.9%, was the predominant phylum in landfill fungal communities. At the genus level, Family Hypocreaceae unclassified (15.7%), Fusarium (9.9%) and Aspergillus (8.3%) were the most abundant fungi found in the landfill and most of them are of saprotrophic lifestyle, which plays a big role in nutrient cycling in ecosystem. Fungi existed both in landfilled refuse and leachate while both the richness and evenness of fungal communities were higher in the former. In addition, fungal communities in landfilled refuse presented geographic variances, which could be partly attributed to physical habitat properties (pH, dissolved organic carbon, volatile solid, NH4+, NO2 and NO3), while NO3 was considered the most significant factor (p<0.05) in shaping fungal community.  相似文献   

13.
•Bio-RD-PAO can effectively and extensively remove organohalides. •Bio-RD alone effectively dehalogenate the highly-halogenated organohalides. •PAO alone is efficient in degrading the lowly-halogenated organohalides. •The impacts of PAO on organohalide-respiring microbial communities remain elusive. •Bio-RD-PAO provides a promising solution for remediation of organohalide pollution. Due to the toxicity of bioaccumulative organohalides to human beings and ecosystems, a variety of biotic and abiotic remediation methods have been developed to remove organohalides from contaminated environments. Bioremediation employing organohalide-respiring bacteria (OHRB)-mediated microbial reductive dehalogenation (Bio-RD) represents a cost-effective and environmentally friendly approach to attenuate highly-halogenated organohalides, specifically organohalides in soil, sediment and other anoxic environments. Nonetheless, many factors severely restrict the implications of OHRB-based bioremediation, including incomplete dehalogenation, low abundance of OHRB and consequent low dechlorination activity. Recently, the development of in situ chemical oxidation (ISCO) based on sulfate radicals (SO4·) via the persulfate activation and oxidation (PAO) process has attracted tremendous research interest for the remediation of lowly-halogenated organohalides due to its following advantages, e.g., complete attenuation, high reactivity and no selectivity to organohalides. Therefore, integration of OHRB-mediated Bio-RD and subsequent PAO (Bio-RD-PAO) may provide a promising solution to the remediation of organohalides. In this review, we first provide an overview of current progress in Bio-RD and PAO and compare their limitations and advantages. We then critically discuss the integration of Bio-RD and PAO (Bio-RD-PAO) for complete attenuation of organohalides and its prospects for future remediation applications. Overall, Bio-RD-PAO opens up opportunities for complete attenuation and consequent effective in situ remediation of persistent organohalide pollution.  相似文献   

14.
• The combination of NaOH and nitrite was used to control harmful gas in sewers. • Hydrogen sulfide and methane in airspace were reduced by 96.01% and 91.49%. • Changes in sewage quality and greenhouse effect by chemical dosing were negligible. • The strong destructive effects on biofilm slowed down the recovery of harmful gases. • The cost of the method was only 3.92 × 10−3 $/m3. An innovative treatment method by the combination of NaOH and nitrite is proposed for controlling hydrogen sulfide and methane in gravity sewers and overcome the drawbacks of the conventional single chemical treatment. Four reactors simulating gravity sewers were set up to assess the effectiveness of the proposed method. Findings demonstrated hydrogen sulfide and methane reductions of about 96.01% and 91.49%, respectively, by the combined addition of NaOH and nitrite. The consumption of NaNO2 decreased by 42.90%, and the consumption rate of NaOH also showed a downward trend. Compared with a single application of NaNO2, the C/N ratio of wastewater was increased to about 0.61 mg COD/mg N. The greenhouse effect of intermediate N2O and residual methane was about 48.80 gCO2/m3, which is far lower than that of methane without control (260 gCO2/m3). Biofilm was destroyed to prevent it from entering the sewage by the chemical additives, which reduced the biomass and inhibited the recovery of biofilm activity to prolong the control time. The sulfide production rate and sulfate reduction rate were reduced by 92.32% and 85.28%, respectively. Compared with conventional control methods, the cost of this new method was only 3.92 × 10−3 $/m3, which is potentially a cost-effective strategy for sulfide and methane control in gravity sewers.  相似文献   

15.
• UV/O3 process had higher TAIC mineralization rate than O3 process. • Four possible degradation pathways were proposed during TAIC degradation. • pH impacted oxidation processes with pH of 9 achieving maximum efficiency. • CO32– negatively impacted TAIC degradation while HCO3 not. • Cl can be radicals scavenger only at high concentration (over 500 mg/L Cl). Triallyl isocyanurate (TAIC, C12H15N3O3) has featured in wastewater treatment as a refractory organic compound due to the significant production capability and negative environmental impact. TAIC degradation was enhanced when an ozone(O3)/ultraviolet(UV) process was applied compared with the application of an independent O3 process. Although 99% of TAIC could be degraded in 5 min during both processes, the O3/UV process had a 70%mineralization rate that was much higher than that of the independent O3 process (9%) in 30 min. Four possible degradation pathways were proposed based on the organic compounds of intermediate products identified during TAIC degradation through the application of independent O3 and O3/UV processes. pH impacted both the direct and indirect oxidation processes. Acidic and alkaline conditions preferred direct and indirect reactions respectively, with a pH of 9 achieving maximum Total Organic Carbon (TOC) removal. Both CO32– and HCO3 decreased TOC removal, however only CO32– negatively impacted TAIC degradation. Effects of Cl as a radical scavenger became more marked only at high concentrations (over 500 mg/L Cl). Particulate and suspended matter could hinder the transmission of ultraviolet light and reduce the production of HO· accordingly.  相似文献   

16.
• ORP value from −278.71 to −379.80 mV showed indiscernible effects on methane yield. • Fe(II) and Fe(III) promoted more degradation of proteins and amino acids than Fe0. • The highest enrichment of Geobacter was noted in samples added with Fe0. • Cysteine was accumulated during iron enhanced anaerobic sludge digestion. • Both iron content and valence were important for methane production. This study compared effects of three different valent iron (Fe0, Fe(II) and Fe(III)) on enhanced anaerobic sludge digestion, focusing on the changes of oxidation reduction potential (ORP), dissolved organic nitrogen (DON), and microbial community. Under the same iron dose in range of 0−160 mg/L after an incubation period of 30 days (d), the maximum methane production rate of sludge samples dosed with respective Fe0, Fe(II) and Fe(III) at the same concentration showed indiscernible differences at each iron dose, regardless of the different iron valence. Moreover, their behavior in changes of ORP, DON and microbial community was different: (1) the addition of Fe0 made the ORP of sludge more negative, and the addition of Fe(II) and Fe(III) made the ORP of sludge less negative. However, whether being more or less negative, the changes of ORP may show unobservable effects on methane yield when it ranged from −278.71 to −379.80 mV; (2) the degradation of dissolved organic nitrogen, particularly proteins, was less efficient in sludge samples dosed with Fe0 compared with those dosed with Fe(II) and Fe(III) after an incubation period of 30 d. At the same dose of 160 mg/L iron, more cysteine was noted in sludge samples dosed with Fe(II) (30.74 mg/L) and Fe(III) (27.92 mg/L) compared with that dosed with Fe0 (21.75 mg/L); (3) Fe0 particularly promoted the enrichment of Geobacter, and it was 6 times higher than those in sludge samples dosed with Fe(II) and Fe(III) at the same dose of 160 mg/L iron.  相似文献   

17.
• Fungi enable the constant UASB operation even at OLR of 25.0 kg/(m3×d). • The COD removal of 85.9% and methane production of 5.6 m3/(m3×d) are achieved. • Fungi inhibit VFAs accumulation and favor EPS generation and sludge granulation. • Fungi enrich methanogenic archaea and promote methanogenic pathways. Anaerobic digestion is widely applied in organic wastewater treatment coupled with bioenergy production, and how to stabilize its work at the high organic loading rate (OLR) remains a challenge. Herein, we proposed a new strategy to address this issue via involving the synergetic role of the Aspergillus sydowii 8L-9-F02 immobilized beads (AEBs). A long-term (210-day) continuous-mode operation indicated that the upflow anaerobic sludge bed (UASB) reactor (R1, with AEBs added) could achieve the OLR as high as 25.0 kg/(m3×d), whereas the control reactor (R0, with AEBs free) could only tolerate the maximum OLR of 13.3 kg/(m3×d). Remarkably, much higher COD removal (85.9% vs 23.9%) and methane production (5.4 m3/(m3×d) vs 2.2 m3/(m3×d)) were achieved in R1 than R0 at the OLR of 25.0 kg/(m3×d). Such favorable effect results from the facts that fungi inhibit VFAs accumulation, favor the pH stabilization, promote the generation of more extracellular polymeric substance, and enhance the sludge granulation and settleability. Moreover, fungi may enhance the secretion of acetyl-coenzyme A, a key compound in converting organic matters to CO2. In addition, fungi are favorable to enrich methanogenic archaea even at high OLR, improving the activity of acetate kinase and coenzyme F420 for more efficient methanogenic pathway. This work may shed new light on how to achieve higher OLR and methane production in anaerobic digestion of wastewater.  相似文献   

18.
• 90% total COD, 95.3% inert COD and 97.2% UV254 were removed. • High R2 values (over 95%) for all responses were obtained with CCD. • Operational cost was calculated to be 0.238 €/g CODremoved for total COD removal. • Fenton oxidation was highly-efficient method for inert COD removal. • BOD5/COD ratio of leachate concentrate raised from 0.04 to 0.4. The primary aim of this study is inert COD removal from leachate nanofiltration concentrate because of its high concentration of resistant organic pollutants. Within this framework, this study focuses on the treatability of leachate nanofiltration concentrate through Fenton oxidation and optimization of process parameters to reach the maximum pollutant removal by using response surface methodology (RSM). Initial pH, Fe2+ concentration, H2O2/Fe2+ molar ratio and oxidation time are selected as the independent variables, whereas total COD, color, inert COD and UV254 removal are selected as the responses. According to the ANOVA results, the R2 values of all responses are found to be over 95%. Under the optimum conditions determined by the model (pH: 3.99, Fe2+: 150 mmol/L, H2O2/Fe2+: 3.27 and oxidation time: 84.8 min), the maximum COD removal efficiency is determined as 91.4% by the model. The color, inert COD and UV254 removal efficiencies are determined to be 99.9%, 97.2% and 99.5%, respectively, by the model, whereas the total COD, color, inert COD and UV254 removal efficiencies are found respectively to be 90%, 96.5%, 95.3% and 97.2%, experimentally under the optimum operating conditions. The Fenton process improves the biodegradability of the leachate NF concentrate, increasing the BOD5/COD ratio from the value of 0.04 to the value of 0.4. The operational cost of the process is calculated to be 0.238 €/g CODremoved. The results indicate that the Fenton oxidation process is an efficient and economical technology in improvement of the biological degradability of leachate nanofiltration concentrate and in removal of resistant organic pollutants.  相似文献   

19.
● Simultaneous NH4+/NO3 removal was achieved in the FeS denitrification system ● Anammox coupled FeS denitrification was responsible for NH4+/NO3 removal ● Sulfammox, Feammox and Anammox occurred for NH4+ removal Thiobacillus, Nitrospira , and Ca. Kuenenia were key functional microorganisms An autotrophic denitrifying bioreactor with iron sulfide (FeS) as the electron donor was operated to remove ammonium (NH4+) and nitrate (NO3) synergistically from wastewater for more than 298 d. The concentration of FeS greatly affected the removal of NH4+/NO3. Additionally, a low hydraulic retention time worsened the removal efficiency of NH4+/NO3. When the hydraulic retention time was 12 h, the optimal removal was achieved with NH4+ and NO3 removal percentages both above 88%, and the corresponding nitrogen removal loading rates of NH4+ and NO3 were 49.1 and 44.0 mg/(L·d), respectively. The removal of NH4+ mainly occurred in the bottom section of the bioreactor through sulfate/ferric reducing anaerobic ammonium oxidation (Sulfammox/Feammox), nitrification, and anaerobic ammonium oxidation (Anammox) by functional microbes such as Nitrospira, Nitrosomonas, and Candidatus Kuenenia. Meanwhile, NO3 was mainly removed in the middle and upper sections of the bioreactor through autotrophic denitrification by Ferritrophicum, Thiobacillus, Rhodanobacter, and Pseudomonas, which possessed complete denitrification-related genes with high relative abundances.  相似文献   

20.
The UASB system successfully treated sulfamethoxazole pharmaceutical wastewater. High concentration sulfate of this wastewater was the main refractory factor. UASB recovery performance after a few days of inflow arrest was studied. The optimal UASB operating conditions for practical application were determined. Treatment of sulfamethoxazole pharmaceutical wastewater is a big challenge. In this study, a series of anaerobic evaluation tests on pharmaceutical wastewater from different operating units was conducted to evaluate the feasibility of using anaerobic digestion, and the results indicated that the key refractory factor for anaerobic treatment of this wastewater was the high sulfate concentration. A laboratory-scale up-flow anaerobic sludge blanket (UASB) reactor was operated for 195 days to investigate the effects of the influent chemical oxygen demand (COD), organic loading rate (OLR), and COD/SO42? ratio on the biodegradation of sulfamethoxazole in pharmaceutical wastewater and the process performance. The electron flow indicated that methanogenesis was still the dominant reaction although sulfidogenesis was enhanced with a stepwise decrease in the influent COD/SO42? ratio. For the treated sulfamethoxazole pharmaceutical wastewater, a COD of 4983 mg/L (diluted by 50%), OLR of 2.5 kg COD/(m3·d), and COD/SO42? ratio of more than 5 were suitable for practical applications. The recovery performance indicated that the system could resume operation quickly even if production was halted for a few days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号