首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
污泥中重金属的形态及在小麦幼苗中的富集   总被引:13,自引:2,他引:11  
采用BCR连续提取法研究了污泥中Cd、Pb和Zn的化学形态分布,并通过室内土培实验研究了其在小麦幼苗中的富集效应。研究结果表明,Pb和Cd在污泥中主要以残渣态存在,相对比较稳定;Zn则主要以可交换态和可还原态存在,具有较强的潜在生物有效性。污泥中3种金属的潜在生物有效性由强到弱的顺序为:Zn>Cd>Pb。比较污泥中的Zn、Pb、Cd在小麦根和叶中的富集系数(EC),可发现3种金属在根中的富集系数均大于其在叶中的富集系数,说明小麦根部对这3种金属的富集能力大于其茎叶部分。3种金属在小麦中富集能力的强弱顺序在茎叶中为Zn>Cd>Pb,此结果与金属形态分析的结果相吻合。  相似文献   

2.
硼锑交互作用对水稻吸收积累锑和硼的影响   总被引:3,自引:1,他引:2  
通过溶液培养实验,研究两种价态锑Sb(Ⅲ)和Sb(Ⅴ)与B交互作用对水稻吸收积累Sb和B的影响.结果表明,这两种价态的Sb对水稻生长均有抑制作用,Sb(Ⅲ)比Sb(Ⅴ)对水稻毒害更明显,增加B用量可缓解Sb对水稻的毒害.Sb(Ⅲ)和Sb(Ⅴ)的添加可显著地影响水稻根系和茎叶对B的吸收积累.当B的浓度为0.5 mg·L-1时,添加三价Sb 30μmol·L-1可以显著地降低水稻茎叶和根系中的B含量57.6%和75.6%(与对照处理相比,P0.05).同样,增加B用量也影响水稻根系和茎叶对两个价态Sb的吸收积累.在10μmol·L-1Sb(Ⅲ)处理下,添加2.0 mg·L-1的B可导致水稻根系和茎叶Sb含量分别比0.5 mg·L-1B处理降低39.1%和9.2%;在10μmol·L-1Sb(Ⅴ)处理下,添加2.0 mg·L-1的B导致水稻根系Sb含量比0.5mg·L-1B处理降低13.9%.B的应用对Sb在水稻根系和茎叶中的富集系数和分配比率也有显著影响.研究结果表明,在Sb污染农田中可通过施用硼肥来提高植物的硼营养,降低植物对Sb的吸收积累,从而降低Sb对人体健康的危害.  相似文献   

3.
有机酸可提高土壤磷有效性,且能影响对重金属的固定,其在磷活化和重金属钝化方面具有非常复杂的功能.本研究以模拟铅污染土壤为对象,外源添加磷和柠檬酸,采用BCR三步连续提取法、0.01 mol·L-1CaCl2提取和毒性淋溶提取法(TCLP)评价有机酸存在下磷对模拟铅污染土壤的钝化效果;以苹果酸、NaNO3溶液为解吸剂探讨磷-柠檬酸-铅体系的稳定性.结果表明,无柠檬酸时,酸提取态Pb含量随磷浓度的增加而降低;加磷100 mg·kg-1、400 mg·kg-1时,酸提取态Pb含量随柠檬酸浓度增加而显著增加.残渣态Pb与酸提取态Pb的变化趋势相反,说明磷能降低土壤铅的生物有效性,柠檬酸则作用相反.有机酸浓度一定时,随磷浓度增加,0.01 mol·L-1CaCl2提取和TCLP提取的铅含量均呈降低趋势,表明磷具有钝化铅污染土壤的效果;但磷浓度一定时,它们提取铅含量随柠檬酸浓度增加表现出相反的变化趋势.土壤铅的解吸率随苹果酸浓度增加、pH值减小、离子强度增加而提高,且只添加磷处理的土壤铅解吸量较添加磷和柠檬酸共同处理的土壤少,前者钝化的铅稳定性更高.  相似文献   

4.
简化连续提取法评价污染土壤中Zn、Cd的植物有效性   总被引:2,自引:1,他引:1  
以0.01 mol·L-1CaCl2和0.005 mol·L-1 DTPA作为提取剂,用简化的3步连续提取法对贵州省赫章县土法炼锌污染土壤中Zn、Cd的形态进行了分析.结果显示,污染土壤中Zn、Cd主要以残渣态的形式存在,CaCl2提取态和DTPA提取态Zn、Cd平均仅占全量的0.63%、3.91%和10.94%、10.13%.土壤中不同形态Zn、Cd含量与玉米中Zn、Cd含量的相关分析结果显示,CaCl2提取态金属与玉米中金属含量没有显著的相关关系,而DTPA提取态、残渣态以及总量Zn、Cd与玉米根、茎叶中Zn、Cd含量显著正相关.这些结果表明CaCl2提取态Zn、Cd对土壤中该元素的植物有效态可能不具重要贡献,而DTPA提取态金属和金属总量在一定程度上能作为评价土壤中元素植物有效性的标准.  相似文献   

5.
为探明小麦三叶期幼苗和成熟期籽实产量的Ni毒害效应及其相互关系,实现小麦作物Ni毒害的早期诊断,以春小麦"冀张春3号"为材料,采用盆栽试验方法,研究了外源Ni对小麦三叶期幼苗生长发育和成熟期籽实产量的影响,并对小麦三叶期和成熟期的生理指标进行相关分析.结果表明,外源Ni投加量100 mg·kg~(-1),茎叶干质量和籽实产量无明显下降(p0.05),茎叶中可溶性糖含量(p0.05)和硝酸盐含量(p0.01)增加,茎叶干鲜比值增加;Ni投加量≥100 mg·kg~(-1),茎叶干质量、可溶性糖、硝酸盐含量和成熟期籽实产量均明显下降(p0.05或p0.01),茎叶中淀粉和抗坏血酸含量明显增加(p0.05或p0.01),茎叶干鲜比值下降.土壤中各形态Ni与小麦三叶期幼苗中Ni呈显著正相关(p0.01),土壤和幼苗中Ni与茎叶干质量、可溶性糖和籽实产量均呈显著负相关(p0.05或p0.01),表明小麦三叶期幼苗毒害和成熟期籽实产量下降是由作物体内Ni毒害造成的且无观察效应浓度(NOEC)一致;同时试验观察到小麦三叶期幼苗茎叶干质量、可溶性糖和硝酸盐含量变化与成熟期籽实产量呈显著正相关关系(p0.05或p0.01),表明利用小麦三叶期幼苗Ni毒害效应指标表征成熟期籽实产量Ni毒害是可行的.试验确定外源Ni对小麦成熟期籽实产量的无观察效应浓度为:土壤全Ni含量为139.08 mg·kg~(-1),土壤有效态Ni(DTPA提取)含量为21.59 mg·kg~(-1),小麦茎叶Ni含量为15.37 mg·kg~(-1),小麦根系Ni含量为361.78 mg·kg~(-1).  相似文献   

6.
通过盆栽试验筛选籽粒Cd低积累型小麦品种,为重金属污染耕地安全利用提供技术支撑.试验研究了 119个小麦品种植株各部位分别在1.5 mg·kg-1(低含量)和4.0 mg·kg-1(高含量)Cd污染土壤条件下对Cd的富集和转运特性,并探讨了小麦不同器官Cd含量的相关性和土壤Cd含量与小麦吸收Cd的关系.结果表明:①供试...  相似文献   

7.
秋华柳(Salix variegate Franch.)因具有良好的重金属耐受和积累能力,常被作为重金属污染土壤修复工程物种.通过盆栽模拟试验,分析了不同浓度外源草酸和酒石酸处理下土壤Cd形态的变化和秋华柳Cd含量的积累特征,以探究外源有机酸在Cd污染土壤植物修复中的应用潜力.结果表明:添加外源酒石酸可显著降低土壤非有效性Cd含量,增加土壤中以可交换态Cd为主的有效性Cd含量,促进了秋华柳对Cd的积累,同时也显著提升了植株的富集系数,其中添加5 mmol/kg酒石酸的处理效果最佳.与CK相比,添加5 mmol/kg外源酒石酸可显著增加秋华柳根、茎和叶中的Cd积累量,地上、地下部分和全株的Cd积累量分别提升了62.2%、75.9%和78.4%,地上和地下部分富集系数分别提升了173.0%和178.8%.添加外源草酸对土壤有效性Cd含量没有显著影响,秋华柳根、茎和叶的Cd含量和积累量无明显提升.研究显示,添加较低浓度的酒石酸更有利于增加土壤中可交换态Cd含量和有效性Cd含量,促进秋华柳对土壤中Cd的吸收和积累,增强秋华柳对Cd污染土壤的修复能力,可应用于Cd污染土壤的植物修复.   相似文献   

8.
通过砂培试验,研究了铅(Pb)胁迫下不同品种玉米根、茎叶中Pb的化学形态变化,进一步探讨玉米耐Pb机制.结果表明,本试验中对Pb胁迫耐性最强的玉米品种为郑单958和隆平206,耐性最差的为联创5号.不同浓度Pb胁迫下玉米根、茎叶中Pb主要以无毒的醋酸提取态和盐酸提取态为主,比例高达60%~87%,这一比例根部略高于茎叶;而活性较强的乙醇提取态和水提取态Pb含量两者合计所占比例为6%~20%.100 mg·L-1Pb胁迫下隆平206茎叶中Pb的乙醇和水提取态合计值最低(0.52 mg·kg-1),其次是郑单958(0.93 mg·kg-1),最高的为联创5号(2.78 mg·kg-1);800 mg·L-1Pb胁迫下,郑单958茎叶中Pb的乙醇提取态和水提取态合计值最低,为2.41 mg·kg-1,因此郑单958耐Pb,可能与体内有毒形态Pb向无毒形态Pb的转换有关.  相似文献   

9.
三叶鬼针草毛状根的诱导及其对重金属Cd、Pb蓄积   总被引:2,自引:0,他引:2  
利用发根农杆菌诱导植物毛状根多被利用于药用植物生物技术工程方面.目前植物修复也利用毛状根生长快,侧根分支多与污染源接触表面积大等优点进行污染水体的修复.三叶鬼针草自然植株具有重金属Cd的超富集能力,本文利用发根农杆菌C58C1诱导三叶鬼针草叶片产生毛状根,在1/2MS的液体培养基能稳定、正常生长,并表现对重金属Cd、Pb极强的忍耐和蓄积能力.单一处理时,三叶鬼针草毛状根在Cd≤50μmol·L-1和Pb≤25μmol·L-1时均能正常生长,生物量积累与对照没有明显差异;随处理浓度增加,当Cd≥100μmol·L-1、Pb≥50μmol·L-1时,毛状根生物量积累明显受到抑制.Cd-Pb复合处理时,低浓度Cd(25μmol·L-1)与Pb复合处理,随Pb浓度增加(25、100、200μmol·L-1)三叶鬼针草毛状根生物量逐渐减少,抑制效应随Pb增加而加剧;高浓度Cd(200μmol·L-1)与Pb复合处理,随Pb浓度增加(25、100、200μmol·L-1)生物量逐渐减少,抑制效应随Pb增加而加剧.高浓度Cd与Pb复合处理,毛状根生长受到抑制更严重.单一处理时,当Cd≤50μmol·L-1时,随处理浓度增加Cd蓄积量增加,当Cd≥100μmol·L-1时,重金属蓄积量明显降低,随处理浓度进一步增加,重金属蓄积量已无明显变化.Pb≤100μmol·L-1处理时,毛状根对Pb蓄积量随处理浓度增加微弱降低,但不明显;当Pb≥200μmol·L-1时,随处理浓度增加,毛状根对Pb蓄积量明显降低.Cd-Pb复合胁迫,低、中Pb(Pb≤100μmol·L-1)促进毛状根对Cd富集,高浓度Pb(Pb≥200μmol·L-1)则抑制Cd的富集;低浓度Cd仅对低浓度25μmol·L-1时Pb有微弱促进积累效应,其余均抑制Pb富集.这说明三叶鬼针草毛状根可作为重金属Cd、Pb污染水体潜在的植物修复新材料.  相似文献   

10.
研究过磷酸钙、石灰和硅钙镁肥单一施用对土壤Cd形态和小麦植株不同器官Cd含量的影响,以期为微碱性Cd污染土壤安全利用提供理论参考.通过盆栽试验,研究不同改良剂对小麦成熟期土壤Cd形态以及二乙基三胺五乙酸(DTPA)提取态镉含量的影响,分析小麦不同器官中Cd的含量.结果表明:过磷酸钙显著降低了土壤的pH值,石灰和硅钙镁肥显著提高了土壤的pH值.3种改良剂均可以显著降低土壤DTPA提取态镉含量,其中施用硅钙镁肥(3%)的效果最好,降幅为73.60%.添加硅钙镁肥可显著降低土壤可交换态镉含量,同时增加残渣态镉含量,其中硅钙镁肥(3%)处理效果最佳,土壤可交换态镉含量降幅为63.30%,残渣态镉含量增幅为56.20%.3种改良剂均可显著降低小麦地上部、地下部Cd含量,其中硅钙镁肥处理对小麦地上部及地下部Cd含量降低效果最佳.硅钙镁肥(1.2%)处理对小麦籽粒镉含量降低效果最好,降幅为90.85%.土壤pH值与土壤DTPA提取态Cd含量达到了极负显著水平,土壤DTPA提取态Cd含量与小麦各器官中Cd呈极显著正相关.因此,施用不同改良剂可不同程度的降低土壤中Cd的生物有效性和小麦植株不同器官中Cd的含量,缓解Cd对植株的胁迫效应. 3种改良剂在同等剂量水平下,硅钙镁肥对小麦器官中镉的降低效果最佳.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

14.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

18.
Single and joint effects of pesticides and mercury on soil urease   总被引:3,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
Common silver barb,Puntius gonionotus,exposed to the nominal concentration of 0.06 mg/L Cd for 60 d,were assessed for histopathological alterations(gills,liver and kidney),metal accumulation,and metallothionein(MT)mRNA expression.Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae,vacuolization in hepatocytes,and prominent tubular and glomerular damage in the kidney.In addition,kidney accumulated the highest content of cadmium,more than gills and liver.Expression of MT mRNA was increased in both liver and kidney of treated fish.Hepatic MT levels remained high after fish were removed to Cd-free water.In contrast,MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water.The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号