首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
不同填料UAFB-ANAMMOX反应器的脱氮效能   总被引:1,自引:0,他引:1  
由于厌氧氨氧化菌增殖速率缓慢,对环境因素敏感,导致反应器启动时间长且运行不稳定. 以人工配水为研究对象,采用UAFB(升流式厌氧固定床)反应器,分别填充组合填料、聚氨酯泡绵和立体弹性纤维作为生物载体,对各载体的挂膜特征及厌氧氨氧化的实现与稳定特性进行了研究. 结果表明:与聚氨酯泡绵和立体弹性纤维相比,组合填料在快速启动反应器及运行稳定性上有较大优势,反应器启动时间为42d,稳定运行后期NH4+-N及NO2--N的去除率均达到90%以上,最大TN去除负荷(以N计)为1.239kg/(m3·d);并且组合填料挂膜效果较好,生物膜跟载体结合较紧密. 以聚氨酯泡绵为载体的反应器启动时间(66d)长,挂膜效果较差,膜易脱落;稳定运行后期NH4+-N及NO2--N的去除率分别大于90%与95%,最大TN去除负荷为1.268kg/(m3·d). 以立体弹性纤维为载体的反应器对ρ(DO)和ρ(基质)及水力冲击等环境因素较为敏感,运行效果不稳定,最大TN去除负荷仅为0.724kg/(m3·d).   相似文献   

2.
采用疏水性聚砜中空纤维膜生物反应器处理甲苯有机气体,考察了甲苯去除性能的影响因素,结果表明聚砜中空纤维膜生物反应器(MBfR)能高效处理甲苯气体,甲苯去除率可达93%。膜生物反应器启动迅速、抗甲苯负荷能力强。膜生物反应器的适宜运行条件为停留时间为12.3 s,循环液pH=7.2,喷淋密度为5.1 L/(m2·h)。MBfR系统对甲苯气体的最大去除负荷为900 g/(m3·h)。采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)分子生物学方法技术研究膜生物反应器内微生物群落,结果表明,聚砜中空纤维膜生物反应器内主要有Uncultured bacterium、Rhodanobacter sp、Aeromonas hydrophila strain和Rhodococcus sp.等甲苯的降解优势菌。  相似文献   

3.
白腐真菌生物过滤塔处理氯苯气体的研究   总被引:9,自引:1,他引:8  
以竹子为填料,构建新型的白腐真菌Phanerochaete chrysosporium生物过滤塔,考察该过滤塔在不同操作条件下对氯苯的去除性能.结果表明,白腐真菌生物过滤塔对氯苯表现出较好的去除效果,在进口浓度200~1 500 mg/m3,空塔停留时间122 s的条件下,最大去除率接近80%,平均去除率约50%.过滤塔的去除速率与进口负荷和去除率有关,在进口浓度500~1 500mg/m3,流量0.5 m3/h的条件下,最大去除速率可达94 g/(m3·h),平均去除速率为60 g/(m3·h).过滤塔去除速率对进口负荷变化的响应幅度与流量有关,在低流量条件下随进口负荷的变化率较大.过滤塔中氯苯浓度的沿程分布呈现出非线性下降的特征,造成这一现象的原因可能与过滤塔内生物量的分布情况有关.  相似文献   

4.
甲硫醇脱臭菌的分离、分子鉴定及应用   总被引:1,自引:1,他引:0  
以低浓度甲硫醇臭气的生物降解为研究对象, 从不同的菌源中筛选得到一株能高效降解甲硫醇的菌株.运用16S rDNA的分子鉴定技术,确定筛选菌Jll的16S rDNA序列同芸苔根际菌(Rape rhizosphere)的相似性最大(97%),为同属.筛选菌Jll生长迅速,挂膜时间短.将其接种于生物滴滤反应器中,在甲硫醇进气流量为0.3 m3/h,质量浓度为40 mg/m3,运行仅4 d后,其去除率可逐渐升到100%.当进气流量分别为0.3,0.6和1.2 m3/h时,该反应器对甲硫醇的最大去除能力分别为36.2,41.8和16.4  mg/(m3·h).反应器进气负荷提高到(96±3) mg/(m3·h),运行一段时间后,恢复适宜的进气负荷,生物滴滤反应器对甲硫醇的去除率很快回升.这表明菌Jll不但降解能力高,而且抗逆性强.   相似文献   

5.
采用自行设计的生物滤池反应器去除地表水中的氮,考察了HRT、水力负荷和氨氮负荷对生物滤池出水水质的影响。结果表明:系统TN去除率随水力负荷的增加而下降,氨氮去除率无明显变化,水力负荷小于1.2 m3/(m2·d),TN去除率达到54%以上;在进水氨氮质量浓度为14.52~17.44 mg/L条件下,HRT为10 h时,生物滤池对氮去除效果较好;当HRT为6 h,进水氨氮负荷增加到0.048 kg/(m3·d)以上,氨氮和TN平均去除率分别为96%和31%。  相似文献   

6.
生物滴滤塔净化氯代烃混合废气的研究   总被引:4,自引:3,他引:1  
应用生物滴滤塔进行了二氯甲烷和1,2-二氯乙烷混合废气净化的研究,使用制药厂活性污泥挂膜,35 d后挂膜完成,对二者的去除率可分别维持在80%和75%以上.对二氯甲烷和1,2-二氯乙烷的最大去除负荷分别为13 g·(m3·h)-1和10g·(m3·h)-1.CO2的产生负荷与混合废气的去除负荷呈线性关系,生物滴滤塔对混合废气的矿化率维持在61.2%.对混合废气中二氯甲烷和二氯乙烷相互作用考察发现两者存在一定的抑制作用,同时考察了反应器运行过程中生物量的变化情况.  相似文献   

7.
低温下间歇式生物过滤系统去除高负荷H2S的效能   总被引:2,自引:0,他引:2       下载免费PDF全文
以鸡粪堆肥和PE混合物为填料的生物过滤系统,在较低温度下进行生物去除H2S废气的性能研究.采用间歇式运行方式,当在较高气速条件下,即EBRT为39s、32s、24s和13s,入口浓度3000mg/m3时,去除率可分别达100%、100%、100%和65%.整个系统的入口负荷为812 g/(m3·h)时,去除负荷为528 g/(m3·h).且在较低的实验温度(9~16.5℃),入口浓度50~3000 mg/m3条件下,当EBRT为39s、32s、24s时,H2S的去除率为100%;当EBRT为13s时,去除率为62%~88%.结果表明,在较低温度下,高气速,高负荷条件下,间歇式生物过滤系统对H2S具有较高的去除性能.  相似文献   

8.
孙事昊  贾体沛  陈凯琦  彭永臻  张亮 《环境科学》2019,40(10):4585-4593
在非稳态条件下,采用AAO剩余污泥为种泥、聚丙烯环为填料启动生物滴滤塔,处理实际市政污水厂细格栅H2S恶臭气体.研究了生物滴滤塔的启动、稳定阶段的运行模式,在空床停留时间为14 s,进气浓度2. 02~319. 19 mg·m-3,环境温度为7. 8~32. 5℃条件下,平均出气浓度为13. 08 mg·m-3,平均去除率达到91. 8%,最高去除负荷达到78. 37 g·(m3·h)-1.在247d运行中,监测到生物滴滤塔压降在长期运行中维持稳定在96 Pa·m-1.高通量测序表明,生物滴滤塔内的微生物群落发生了改变,Shannon指数由4. 99降低至3. 75,但Pseudomonas和Thiobacillus等功能菌的存在解释了生物滴滤塔较好的去除性能.结果表明,在非稳态条件下,以AAO剩余污泥为种泥的生物滴滤塔可实现H2S的高效去除;聚丙烯环作为填料可以在长期运行中维持稳定的压降;微生物群落在长期高浓度的H2S环境中,多样性降低,但降解性能可以得到提高.  相似文献   

9.
接触氧化过滤一体化生物反应器处理城市污水   总被引:4,自引:0,他引:4  
杨开  杨小俊  李振华  王弘宇  李璐  吕斌 《环境科学》2009,30(12):3596-3601
针对一种采用组合填料的接触氧化过滤一体化生物反应器,进行了以间歇方式处理城市污水的试验研究.结果表明,在曝气时间为60 min,DO为2~3 mg/L,反应器上部填料层容积负荷率(以COD计)为2.4 kg/(m~3·d),生物滤床初始滤速为5 m/h时,反应器出水COD、NH_4~+-N、浊度的平均去除率分别为90.6%、81.4%和96.7%,但TP去除效果欠佳,平均去除率为60.1%.  相似文献   

10.
间歇喷淋营养液对生物滴滤塔净化甲苯的影响   总被引:2,自引:0,他引:2  
为探索间歇喷淋营养液对生物滴滤塔的影响,以净化甲苯为研究对象,应用FX1N-14MR-001型可编程逻辑控制器(PLC),实现生物滴滤塔的间歇喷淋营养液操作,研究了环境温度、ρ(TN)、营养液喷淋密度和喷/停时间对净化甲苯能力的影响,并对机理进行了分析. 结果表明:当生物滴滤塔系统的气体停留时间为40.70s时,营养液最佳喷淋密度为4.5L/(m2·min),最佳喷/停时间为2min/4min. 当甲苯系统进口负荷小于88.29g/(m3·h)时,甲苯的去除率可达95.0%以上;当进口负荷为186.04g/(m3·h)时,甲苯的去除率为87.6%,系统对甲苯的最大去除能力由连续喷淋时的169.63g/(m3·h)升至248.85g/(m3·h).   相似文献   

11.
生物滴滤塔净化含低浓度苯乙烯废气的研究   总被引:3,自引:1,他引:2  
利用菌丝体热解炭作为填料,采用两座相同实验室规模的生物滴滤塔,分别填装热解炭-木屑混合填料和木屑单一填料,并联操作,进行微生物净化含苯乙烯废气的实验,研究并对比了两座生物滴滤塔的净化性能.结果表明,由于热解炭具有比表面积大、孔隙率高等特点,热解炭-木屑混合作为生物滴滤塔填料,比单一的木屑填料挂膜速度快,净化效果好,停运恢复能力强.适宜操作条件为:入口气体浓度50~ 450mg·m-3,停留时间21.6~43.2 s,气液比110.7 ~55.3,净化效率92% ~ 100%,最大去除负荷可达153.1 g·m-3· h-1.整个实验过程中,系统的压降始终维持在0~255 Pa,动力消耗小.研究发现,循环液中氨氮(NH4+-N)浓度只需能够保证微生物正常的生命活动即可,不宜过量或不足.生物滴滤塔循环液的紫外吸光度(UV254)与苯乙烯去除率具有一定的相关性,可通过测定循环液UV254,了解生物滴滤塔的运行状况.  相似文献   

12.
为探讨BAF(曝气生物滤池)最佳反冲洗强度及其选择依据,以某处理石化二级出水的强化除磷BAF为研究对象,采取不同的反冲洗强度进行气-水联合反冲洗,探讨反冲洗过程中出水污泥量峰值出现时间、污泥的SOUR(比好氧呼吸速率)变化、反冲洗前后微生物量和微生物脱氢酶活性(DHA)的变化以及反冲洗后的恢复效果,并对反冲洗强度参数的选择进行了优化. 结果表明:在该研究条件下,采用气洗〔强度为12 L/(m2·s)〕4 min,气-水联合洗〔气洗强度为12 L/(m2·s),水洗强度为6 L/(m2·s)〕5 min,最后用清水漂洗9 min的反冲洗方式,排水中污泥的ρ(SS)可在最短时间(3 min)达到峰值;反冲洗排水中污泥的SOUR较低,平均值为0.5 mg/(mg·h);距离底端进水口1.3和2.2 m处的滤料层微生物的量损失较小,分别为4.4%和5.3%,其相应微生物的活性有所增加. 研究显示,该条件下反冲洗可有效清除滤料颗粒间所截留及滤料表面脱落的老化生物膜,并可保留适量活性较高的生物膜,强化了传质条件,反冲洗后对污染物的处理能力能恢复迅速.   相似文献   

13.
采用低温等离子体-生物耦合系统降解氯苯和二氯乙烷混合气体,考察频率为10 000 Hz,能量密度(specific input energy,SIE)为6 111 J·L-1时进气浓度和气体流速对目标污染物降解的影响,并通过对产物与SIE之间关系以及生物滴滤塔中生物量和生物多样性的分析,更进一步揭示等离子-生物耦合系统的优势.结果表明,当SIE和气体流速一定时,增加初始浓度会降低混合气体的去除率;从经济效益考虑,气体流速宜采用0.71 L·min~(-1).经产物分析发现,在二氯乙烷和氯苯的浓度均为500 mg·m-3,气体流速为0.71 L·min~(-1)的条件下,二氧化碳的生成量以及选择性均随着SIE的增大而增大;在同样的条件下氯离子浓度随着SIE的增加而逐渐变大;生物滴滤塔中蛋白质含量随着反应器运行逐渐增加最后趋于稳定,下层的生物量高于上层;通过高通量测序分析,结果显示生物滴滤塔中的生物保有丰富的群落及物种多样性的特点.  相似文献   

14.
研究采用装有特制ZX02型填料的生物滴滤塔,对某药厂青霉素车间现场发生的主要含醋酸丁酯、正丁醇和苯乙酸等混合废气进行了3个多月的连续处理中试试验.主要考察了醋酸丁酯、正丁醇和苯乙酸的进气污染物质量负荷(Nw)、停留时间和喷淋水量对各自去除率的影响及生物降解性能.实验运行结果表明,当醋酸丁酯、正丁醇和苯乙酸的最大Nw为229.5 g/(m3·h)、275.4g/(m3·h)和42.5 g/(m3·h)时,其去除率分别为96%、95%和100%.说明本生物滴滤塔能有效去除该厂混合废气,其最佳运行参数为:停留时间31.2s, 喷淋水量为4 L/(L·d).该滴滤塔抗冲击负荷能力强,无堵塞现象,无需经常进行反冲洗,可长期稳定运行.  相似文献   

15.
固定化微生物处理含H2S气体的试验研究   总被引:54,自引:3,他引:54  
研究海藻酸钠包理固定化微生物颗粒填充床去除气相H2S的过程,活性微生物为经S^2-加富驯化的污水水污泥。填充滴滤塔运行实验表明,除H2S外适宜的PH值和喷淋率分别为1.8-4.0和〉0.17m^3(m^3.d);  相似文献   

16.
石榴石作为一种新型矿物滤料在净水处理方面具有强大的竞争力和广阔的应用前景.通过对石榴石滤料进行过滤及反冲洗试验,研究其截污除浊性能、水头损失变化规律及对有机物的去除效果,并与传统的石英砂滤料做对比,同时探讨了石榴石滤料的适宜反冲洗强度范围及气水反冲洗运行参数.结果表明:在滤速为8 m/h的条件下,与石英砂滤柱的过滤效果相比,石榴石滤柱滤后水的平均浊度下降0.3 NTU,有机物平均质量分数下降5%,但其平均水头损失增长率为1 cm/h;在截污除浊及去除有机物方面,石榴石滤柱在60 cm滤层厚度处与石英砂滤柱在85 cm滤层厚度的去除效果十分接近,因此其能有效减少滤料体积,从而节省滤料及节约设备投资.在不同滤速下,水头损失是限制石榴石滤柱过滤周期的主要因素;石榴石滤料适宜的气反冲洗强度范围为14~16 L/(s·m2),水反冲洗强度范围为5~7 L/(s·m2),其气水反冲洗的最佳运行参数为气洗强度16 L/(s·m2)、水洗强度7 L/(s·m2)、气水联合反冲洗4 min、单独水漂洗7 min.其中,气反冲洗强度对石榴石滤料的反冲洗效果影响最大.研究显示,相较于传统石英砂滤料,石榴石滤料具有高过滤性能、低滤料体积的特点,在水处理滤料的应用方面显示出一定的优势.   相似文献   

17.
基于MBfR(氢基质生物膜反应器)研究进水中ρ(p-CNB)(p-CNB为对氯硝基苯)和氢气压力对氢基质自养微生物还原降解p-CNB的影响,同时分析在ρ(p-CNB)和氢气压力影响下生物膜内电子受体生物还原的当量电子通量和还原动力学. 结果表明:提高进水中的ρ(p-CNB),p-CNB、p-CAN(对氯苯胺)的去除通量分别由0.014、0.011 g/(m2·d)升至0.099、0.060 g/(m2·d),但p-CNB的去除率由95.9%降至68.4%;提高氢气压力,p-CNB、p-CAN的去除通量分别由0.027、0.019 g/(m2·d)升至0.028、0.022 g/(m2·d),p-CNB去除率由93.1%升至95.1%,升幅均不大,说明进水ρ(p-CNB)比氢气压力更能直接影响p-CNB和p-CAN的去除通量及p-CNB去除率. 当量电子通量分配和还原动力学结果表明,p-CNB和p-CAN的还原对氢气压力升高的敏感性不强烈,进一步揭示降低进水中ρ(p-CNB)比提高氢气压力更能明显地促进微生物对p-CNB和p-CAN的去除效果. 氢气压力变化对硫酸盐还原和反硝化的影响程度高于p-CNB或p-CAN的还原,当氢气可利用率受限时,p-CNB或p-CAN的还原会由于电子供体的竞争而受到抑制.   相似文献   

18.
以两种新型涂铁改性石英砂(纳米氧化铁改性砂,Nano-OCS;氧化铁改性砂,IOCS)及普通石英砂(RQS)为研究对象,考察了两种新型改性砂对沉后水腐殖酸及浊度的直接过滤效果,对其反冲洗条件进行优化研究,并对3种滤料的过滤效果进行了比较.结果表明,1滤层厚度为45 cm时,最佳滤速为6 m·h-1;3种滤料对腐殖酸和浊度的直接过滤效果依次为:Nano-OCSIOCSRQS,其中两种涂铁砂对腐殖酸的去除率分别为71.70%和61.61%;2Nano-OCS和IOCS滤柱的反冲洗流程分4步,对应的流程及最佳操作条件为:首先,用0.5 mol·L-1NaOH的溶液浸泡,气冲强度13 L·s-1·m-2,气冲时间6 min;然后,用0.075 mol·L-1的NaOH溶液与空气同时反冲洗,NaOH溶液冲洗强度为8 L·s-1·m-2,气冲强度13 L·s-1·m-2,冲洗时间3 min;接着用0.015 mol·L-1的FeCl3溶液与空气同时反冲洗,FeCl3溶液冲洗强度为8 L·s-1·m-2,气冲强度13L·s-1·m-2,冲洗时间2 min;最后,用清水冲洗,冲洗强度8 L·s-1·m-2,冲洗时间4 min.两种涂铁砂反冲洗前后表面形态结构更加复杂、粗糙度增加,对腐殖酸去除率进一步提高.3当滤层厚度由45 cm增加到80 cm时,Nano-OCS对腐殖酸直接过滤的最高去除率由74.6%提高至80.3%,平均去除率由57.9%提高至68.5%.  相似文献   

19.
高效填料塔生物反应器处理制药废水处理厂含硫臭气   总被引:13,自引:0,他引:13  
采用装有特制ZX01型填料的生物反应器,对某药厂废水处理厂产生的含硫臭气进行了近4个月的连续脱臭试验.结果表明:该填料塔生物反应器的最大容积负荷Nv≤204g/(m3·h)时,H2S去除率接近100%,H2S代谢产物主要以SO42-为主.采用少量含N、P等营养物的二次沉淀池出水为喷淋水,其最适喷淋率为3.56L/(L·d).该填料塔有较强的抗负荷冲击能力,塔内阻抗低,无堵塞现象,无需经常进行反冲洗,可长期稳定运行.  相似文献   

20.
分置式厌氧陶瓷膜生物反应器处理模拟生活污水试验研究   总被引:2,自引:0,他引:2  
为强化厌氧系统的处理效能,延缓厌氧膜生物反应器膜污染速率,采用分置式厌氧陶瓷膜生物反应器处理模拟生活污水.结果表明:厌氧反应器UASB经过60 d的启动,可实现对模拟生活污水的良好处理,COD去除率超过90%;耦合膜组件运行后,膜出水COD在22.58 mg·L~(-1)左右,COD总去除率平均为95.53%,甲烷日均产量为352 mL·d~(-1),产率最高达到0.11 m~3·kg~(-1);跨膜压差(TMP)达到26.81 kPa时膜污染严重,周期为14 d,反冲洗能够去除膜表面的泥饼层,有效地延长膜污染周期;对混合液及滤饼层中的多糖和蛋白质浓度进行了分析,结果表明,蛋白质是引起膜污染的主要物质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号