首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The methods of positive matrix factorization–chemical mass balance and principal component analysis/multiple linear regression–chemical mass balance were studied in this paper, for combined source apportionment. Due to the high similarity among the source profiles, several problems would raised when only one receptor model was applied. For example, the collinearity problem would result in the negative contributions when applying CMB model; certain sources would not to be separated out when applying PCA or PMF model. In this study, PCA/MLR–CMB model and PMF–CMB were attempted to resolve the problem, where the combined models were applied to study the synthetic and ambient datasets. In synthetic dataset, there were seven sources (six actual sources from real world, and one unknown source). The results obtained by the combined models show that the combined source apportionment technique is feasible. In addition, an ambient dataset from a northern city in China was analyzed by PCA/MLR–CMB model and PMF–CMB model, and these two models got the similar results. The results show that coal combustion contributed the largest fraction to the total mass.  相似文献   

2.
The size and chemical composition of individual diesel exhaust particles were measured in order to determine unique mass spectral signatures that can be used to identify particle sources in future ambient studies. The exhaust emissions from seven in-use heavy-duty diesel vehicles (HDDVs) operating on a chassis dynamometer were passed through a dilution tunnel and residence chamber and analyzed in real time by aerosol time-of-flight mass spectrometry (ATOFMS). Seven distinct particle types describe the majority of particles emitted by HDDVs and were emitted by all seven vehicles. The dominant chemical types originated from unburned lubricant oil, and the contributions of the various types varied with particle size and driving conditions. A comparison of light-duty vehicle (LDV) exhaust particles with the HDDV signatures provide insight into the challenges associated with developing an accurate source apportionment technique and possible ways of how they may be overcome.  相似文献   

3.
Receptor-based chemical mass balance (CMB) analysis techniques are designed to apportion species that are conserved during pollutant transport using conserved source profiles. The techniques will fail if non-conservative species (or profiles) are not properly accounted for in the CMB model. The straightforward application of the CMB model developed for Project MOHAVE using regional profiles resulted in a significant under-prediction of total sulfate oxides (SOx, SO2 plus fine particulate sulfate) for many samples at Meadview, AZ. In addition, for these samples the concentration of the inert tracer emitted from the MOHAVE Power Project (MPP), ocPDCH, was also under-predicted. A second-generation model has been developed which assumes that separation of particles and SO2 can occur in the MPP plume during nighttime stable plume conditions. This second-generation CMB model accounts for all SOx present at the various receptor sites. In addition, the concentrations of ocPDCH and the presence of other inert tracers of emission from regional sources are accurately predicted. The major source of SOx at Meadview was the MPP, but the major source of sulfate at this site was the Las Vegas urban area. At Hopi Point in the Grand Canyon, the Baja California region (Imperial Valley and northwestern Mexico) was the major source of both SOx and sulfate.  相似文献   

4.
Concentration levels of total suspended particles (TSP) and 27 major, minor and trace elemental components were determined at four sites in Kosovo through a 1-year survey (January-December 2002). Ambient concentrations were evaluated in comparison to limit values. The origin of elemental TSP constituents was investigated by calculating enrichment factors and diagnostic ratios. Multivariate statistics, such as hierarchical cluster analysis and factor analysis, were also employed to identify emission sources. A multivariate statistical receptor model (Absolute Principal Component Analysis, APCA) was applied to quantify source contributions. Soil dust, cement production, vehicular emissions, brake wear, and fuel combustion were identified as major sources with variable contributions at the four sampling sites.  相似文献   

5.
应用化学质量平衡模型解析烟台市污染源的排放贡献率   总被引:8,自引:0,他引:8  
根据烟台地区污染排放特点,应用化学质量平衡模型(CMB8)进行污染源解析分析,得出每个污染源对于受体地区颗粒物体样本的排放贡献率。最终的模型结果显示,建筑尘和居民烯煤锅炉排放,海洋尘和冶炼厂排放对于大气环境污染也有一定的贡献,以上分析可以为城市污染源治理提供一定的依据。  相似文献   

6.
通过酸缓冲能力的测定实验,研究杭州市主城区大气颗粒物的酸缓冲能力,并利用二重源解析技术,解析了大气颗粒物中碱性组分的来源.结果表明,杭州市主城区大气颗粒物呈弱碱性,对降水酸度有一定的缓冲作用,但作用较小.总体而言,TSP与PM10的酸缓冲能力与其浓度呈负相关,但相关关系不明显,TSP的酸缓冲能力比PM10强.Ca是影响大气颗粒物酸缓冲能力的关键化学组分.TSP的酸缓冲能力主要来自建筑水泥尘.  相似文献   

7.
The Minnesota Particulate Matter 2.5 (PM2.5) Source Apportionment Study was undertaken to explore the utility of PM2.5 mass, element, ion, and carbon measurements from long-term speciation networks for pollution source attribution. Ambient monitoring data at eight sites across the state were retrieved from the archives of the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and analyzed by an Effective Variance – Chemical Mass Balance (EV-CMB) receptor model with region-specific geological source profiles developed in this study. PM2.5 was apportioned into contributions of fugitive soil dust, calcium-rich dust, taconite (low grade iron ore) dust, road salt, motor vehicle exhaust, biomass burning, coal-fired utility, and secondary aerosol. Secondary sulfate and nitrate contributed strongly (49–71% of PM2.5) across all sites and was dominant (≥60%) at IMPROVE sites. Vehicle exhausts accounted for 20–70% of the primary PM2.5 contribution, largely exceeding the proportion in the primary PM2.5 emission inventory. The diesel exhaust contribution was separable from the gasoline engine exhaust contribution at the STN sites. Higher detection limits for several marker elements in the STN resulted in non-detectable coal-fired boiler contributions which were detected in the IMPROVE data. Despite the different measured variables, analytical methods, and detection limits, EV-CMB results from a nearby IMPROVE-STN non-urban/urban sites showed similar contributions from regional sources – including fugitive dust and secondary aerosol. Seasonal variations of source contributions were examined and extreme PM2.5 episodes were explained by both local and regional pollution events.  相似文献   

8.
于2013年9月(非采暖季)、2014年2-3月(采暖季)、2014年5月(风沙季)采集忻州市3个监测点(新城区、开发区和旧城区)的PM2.5样品,分析其中的39种元素、9种水溶性离子及2种碳组分,并对PM2.5的质量浓度进行重构。结果表明,重构后的化学组分分为5类:矿物尘、微量元素、有机物、元素碳和二次粒子,其中矿物尘、二次粒子及有机物是忻州PM2.5的主要组成,分别占到ρ(PM2.5)的24.0%~36.2%、19.2%~32.6%和12.9%~25.7%;化学组成质量分数具有较明显的季节变化特征,风沙季矿物尘质量分数高于采暖季和非采暖季,采暖季有机物质量分数高于其他两季,非采暖季二次粒子质量分数略高于其他两季;化学组分的空间变化显示会展中心站点的二次粒子和矿物尘质量分数明显高于其他2个站点。应用化学质量平衡(CMB)模型进行来源解析,结果显示忻州市PM2.5的主要来源是扬尘(21%~35%)、二次粒子(25%~26%)和机动车尾气(21%~26%)。  相似文献   

9.
Abstract

To determine the sources of particulate matter less than 2.5?μm (PM2.5 in different ambient atmospheres (urban, roadside, industrial, and rural sites), the chemical components of PM2.5 such as ions (Cl-, NO3-, SO42-, NH4+, Na+, K+, Ca2+, and Mg2+), carbonaceous species, and elements (Al, As, Ba, Cd, Cu, Fe, Mn, Ni, Pb, Se, V, and Zn) were measured. The average mass concentrations of PM2.5 at the urban, roadside, industrial, and rural sites were 31.5?±?14.8, 31.6?±?22.3, 31.4?±?16.0, and 25.8?±?12.4?μg/m3, respectively. Except for secondary ammonium sulfate and ammonium nitrate, the model results showed that the traffic source (i.e., the sum of gasoline and diesel vehicle sources) was the most dominant source of PM2.5 (17.1%) followed by biomass burning (13.8%) at the urban site. The major primary sources of PM2.5 were consistent with the site characteristics (diesel vehicle source at the roadside site, coal-fired plants at the industrial site, and biomass burning at the rural site). Seasonal data from the urban site suggested that ammonium sulfate and ammonium nitrate were the most dominant sources of PM2.5 during all seasons. Further, the contribution of road dust source to PM2.5 increased during spring and fall seasons. We conclude that the determination of the major PM2.5 sources is useful for establishing efficient control strategies for PM2.5 in different regions and seasons.  相似文献   

10.
This study tested the feasibility of using pyrolysis (Py)-gas chromatography (GC)/mass spectrometry (MS) to obtain organic chemical species data suitable for source apportionment modeling of soil-derived coarse particulate matter (PM10) dust on ambient filters. A laboratory resuspension apparatus was used with known soils to generate simulated receptor filter samples loaded with approximately 0.4 mg of PM10 dust, which is within the range of mass loading on ambient filters. Py-GC/MS at 740 degrees C generated five times more resolvable compounds than were obtained with thermal desorption GC/MS at 315 degrees C. The identified compounds were consistent with literature from Py experiments using larger samples of bulk soils. A subset of 91 organic species out of the 178 identified Py products was used as input to CMB8 software in a demonstration of source apportionment using laboratory-generated mixtures simulating ambient filter samples. The 178 quantified organic species obtained by Py of soil samples is an improvement compared with the 38 organic species obtained by thermal desorption of soils and the four functionally defined organic fractions reported by thermal/ optical reflectance. Significant differences in the concentration of specific species were seen between samples from different sites, both geographically distant and close, using analysis of variance and cluster analysis. This feasibility study showed that Py-GC/MS can generate useful source profile data for receptor modeling and justifies continued method development.  相似文献   

11.
Data from two of the United States Environmental Protection Agency's speciation trends network fine particulate matter sites within Chicago, Illinois were analyzed using the chemical mass balance (CMB) and positive matrix factorization (PMF) models to determine source contributions to the ambient fine particulate concentrations. The results from the two models were compared to determine the similarities and differences in the source contributions. This included examining the differences in the magnitude of the individual source contributions as well as the correlation between the contribution values from the two methods. The results showed that both models predicted sulfates, nitrates and motor vehicles as the three highest fine particle contributors for the two sites accounting for approximately 80% of the total. The PMF model attributed a slightly greater amount of fine particulate to the road salt, steel and soil sources while vegetative burning contributed more in the CMB results. Correlations between the contribution results from the two models were high for sulfates, nitrates and road salt with very good correlations existing for motor vehicles and petroleum refineries. The predicted PMF profiles agreed well with measured source profiles for the major species associated with each source.  相似文献   

12.
Approximately 750 total suspended particulates (TSPs) and coarse particulate matter (PM10) filter samples from six urban sites and a background site and >210 source samples were collected in Jiaozuo City during January 2002 to April 2003. They were analyzed for mass and abundances of 25 chemical components. Seven contributive sources were identified, and their contributions to ambient TSP/PM10 levels at the seven sites in three seasons (spring, summer, and winter days) and a "whole" year were estimated by a chemical mass balance (CMB) receptor model. The spatial TSP average was high in spring and winter days at a level of approximately 530 microg/m(3) and low in summer days at 456 microg/m(3); however, the spatial PMo0 average exhibited little variation at a level of approximately 325 microg/m(3), and PM10-to-TSP ratios ranged from 0.58 to 0.81, which suggested heavy particulate matter pollution existing in the urban areas. Apportionment results indicated that geological material was the largest contributor to ambient TSP/PM10 concentrations, followed by dust emissions from construction activities, coal combustion, secondary aerosols, vehicle movement, and other industrial sources. In addition, paved road dust and re-entrained dust were also apportioned to the seven source types and found soil, coal combustion, and construction dust to be the major contributors.  相似文献   

13.
Environmental Science and Pollution Research - Particulate matter with size less than or equal to 2.5 μm (PM2.5) samples were collected from an urban site Pune, India, during April...  相似文献   

14.
A comparison of the concentration of the total suspended particulate (TSP) matter measured by the tapered element oscillating microbalance (TEOM) monitor and the isokinetic TSP samplers developed at the University of Illinois was carried out in several types of confinement livestock buildings. In a majority of the measurements done, the dust concentration measured by the TEOM monitor was lower than the University of Illinois at Urbana-Champaign (UIUC) isokinetic TSP sampler; the TEOM monitor tended to underestimate the total dust concentration by as much as 54%. The difference in measurements can be attributed to the sampling efficiency of the TEOM monitor sampling head and the loss of some semivolatile compounds and particle-bound water because of heating of the TEOM monitor sampling stream to 50 degrees C. Although several articles in the literature supported the latter argument, this study did not investigate the effect of heating the sampling stream or the effect of moisture on the relative difference in dust concentration measurements. The model that best describes the relationship between the two methods was site specific, that is, the linear regression model was applicable only to four of the sites monitored. The measured total dust concentration in livestock buildings range from approximately 300 to 4000 microg/m3; a higher correlation coefficient between TEOM-TSP and UIUC-TSP monitors was obtained in swine facilities than those obtained in a laying facility.  相似文献   

15.
A source-resolved model has been developed to predict the contribution of different sources to primary organic aerosol concentrations. The model was applied to the eastern US during a 17 day pollution episode beginning on 12 July 2001. Primary organic matter (OM) and elemental carbon (EC) concentrations are tracked for eight different sources: gasoline vehicles, non-road diesel vehicles, on-road diesel vehicles, biomass burning, wood burning, natural gas combustion, road dust, and all other sources. Individual emission inventories are developed for each source and a three-dimensional chemical transport model (PMCAMx) is used to predict the primary OM and EC concentrations from each source. The source-resolved model is simple to implement and is faster than existing source-oriented models. The results of the source-resolved model are compared to the results of chemical mass balance models (CMB) for Pittsburgh and multiple urban/rural sites from the Southeastern Aerosol Research and Characterization (SEARCH) network. Significant discrepancies exist between the source-resolved model and the CMB model predictions for some of the sources. There is strong evidence that the organic PM emissions from natural gas combustion are overestimated. It also appears that the OM and EC emissions from wood burning and off-road diesel are too high in the Northeastern US. Other similarities and discrepancies between the source-resolved model and the CMB model for primary OM and EC are discussed along with problems in the current emission inventory for certain sources.  相似文献   

16.
Mackay D  Hickie B 《Chemosphere》2000,41(5):681-692
A mass balance model has been developed and calibrated to describe the sources, transport and fate of seven polycyclic aromatic hydrocarbons (PAHs; anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, fluoranthene, phenanthrene, and pyrene) in the water and sediments of, and atmosphere over Lac Saint Louis, Quebec. The model uses specified input rates from background advective flows and emissions from the Alcan aluminum smelting facility at Beauharnois to deduce atmospheric concentrations and rates of wet and dry deposition to the three segment lake. Concentrations in water and sediment as well as relevant mass fluxes and residence times are computed and compared satisfactorily with monitoring data for five of the seven PAHs. Underestimation of concentrations for anthracene and phenanthrene is attributed to unquantified additional sources. The sources of the PAH burden in the lake are apportioned, and the implications of these results are discussed including likely response times to changes in loadings. It is suggested that this mass balance approach is more widely applicable to situations in which water bodies are impacted by a variety of contaminant sources.  相似文献   

17.
To make progress towards linking the atmosphere and biogeosphere parts of the black carbon (BC) cycle, a chemothermal oxidation method (CTO-375), commonly applied for isolating BC from complex geomatrices such as soils, sediments and aquatic particles, was applied to investigate the BC also in atmospheric particles. Concentrations and 14C-based source apportionment of CTO-375 based BC was established for a reference aerosol (NIST RM-8785) and for wintertime aerosols collected in Stockholm and in a Swedish background area. The results were compared with thermal–optical (OC/EC) measurements. For NIST RM-8785, a good agreement was found between the BCCTO-375 concentration and the reported elemental carbon (EC) concentration measured by the “Speciation Trends Network—National Institute of Occupational Safety and Health” method (ECNIOSH) with BCCTO-375 of 0.054±0.002 g g−1 and ECNIOSH of 0.067±0.008 g g−1. In contrast, there was an average factor of ca. 20 difference between BCCTO-375 and ECNIOSH for the ambient Scandinavian wintertime aerosols, presumably reflecting a combination of BCCTO-375 isolating only the recalcitrant soot-BC portion of the BC continuum and the ECNIOSH metric inadvertently including some intrinsically non-pyrogenic organic matter. Isolation of BCCTO-375 with subsequent off-line radiocarbon analysis yielded fraction modern values (fM) for total organic carbon (TOC) of 0.93 (aerosols from a Swedish background area), and 0.58 (aerosols collected in Stockholm); whereas the fM for BCCTO-375 isolates were 1.08 (aerosols from a Swedish background area), and 0.87 (aerosols collected in Stockholm). This radiocarbon-based source apportionment suggests that contribution from biomass combustion to cold-season atmospheric BCCTO-375 in Stockholm was 70% and in the background area 88%.  相似文献   

18.
Basing on the material emission data obtained in a test chamber, chemical mass balance (CMB) was used to assess the source apportionment of volatile organic compound (VOC) concentrations in three newly built timber frame houses. CMB has been proven to be able to discriminate the source contributions for two contrasted environmental conditions (with and without ventilation). The shutdown of the ventilation system caused an increase in the VOC concentrations due to the increased contribution of indoor surface materials like the door material and furniture explaining together over 65% of total VOCs. While the increase in formaldehyde concentration is mainly due to furniture (contribution of 70%), the increase in α-pinene concentration is almost exclusively attributable to the emission of door material (up to 84%). The apportionment of VOC source contributions appears as highly dependent on the position of source materials in the building (surface materials or internal materials) and the ventilation conditions explaining that the concentrations of compounds after the shutdown of ventilation system do not increase in equivalent proportion. Knowledge of indoor sources and its contributions in real conditions may help in the selection of materials and in the improvement of construction operations to reduce the indoor air pollution.  相似文献   

19.
20.
上海市中心城区主干道道路扬尘组分特征及来源解析   总被引:4,自引:0,他引:4  
分析了上海市中心城区主干道道路扬尘的化学组分,并采用化学质量平衡模型进行了道路扬尘的源解析。结果表明,上海市中心城区主干道道路扬尘的主要化学组分为Si(18.285 0%(质量分数,下同))、Ca(5.772 2%)、Al(2.460 6%)、Fe(2.345 8%)、Mg(0.889 3%)、K(0.846 4%)、Na(0.785 6%)等地壳元素;源解析结果表明,道路扬尘的首要污染来源是建筑尘(贡献率为34.4%),其次是土壤风沙尘(贡献率为32.6%)、渣土尘(贡献率为20.8%)、机动车尾气尘(贡献率为0.8%)。土壤风沙尘、建筑尘和渣土尘是道路扬尘主要的供应者(贡献率合计超过80%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号