首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flooded rice fields are one of the major biogenic methane sources. In this study, the effects of straw residual treatments on methane emission from paddy fields were discussed. The experimental field was located at Tainan District Agricultural Improvement Station in Chia-Yi county (23 degrees 25'08'N, 120degrees16'26'E) of southern Taiwan throughout the first and the second crop seasons in 2000. The seasonal methane fluxes in the first crop season with rice stubble removed, rice straw burned and rice straw incorporated were 4.41, 3.78 and 5.27 g CH4 m(-2), and the values were 32.8, 38.9 and 75.1 g CH4 m(-2) in the second crop season, respectively. In comparison of three management methods of rice straw residue, the incorporation of rice straw residue should show a significant tendency for enhancing methane emission in the second crop season. Moreover, stubble removed and straw burned treatments significantly reduced CH4 emissions by 28 approximately 56% emissions compared to straw incorporated plot. Concerning for air quality had led to legislation restricting rice straw burning, removing of rice stubble might be an appropriate methane mitigation strategy in Taiwan paddy soils.  相似文献   

2.
Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. One component of the biomass burning inventory, crop residue burning, has been poorly characterized in the National Emissions Inventory (NEI). In the 2011 NEI, wildland fires, prescribed fires, and crop residue burning collectively were the largest source of PM2.5. This paper summarizes our 2014 NEI method to estimate crop residue burning emissions and grass/pasture burning emissions using remote sensing data and field information and literature-based, crop-specific emission factors. We focus on both the postharvest and pre-harvest burning that takes place with bluegrass, corn, cotton, rice, soybeans, sugarcane and wheat. Estimates for 2014 indicate that over the continental United States (CONUS), crop residue burning excluding all areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay occurred over approximately 1.5 million acres of land and produced 19,600 short tons of PM2.5. For areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay, biomass burning emissions occurred over approximately 1.6 million acres of land and produced 30,000 short tons of PM2.5. This estimate compares with the 2011 NEI and 2008 NEI as follows: 2008: 49,650 short tons and 2011: 141,180 short tons. Note that in the previous two NEIs rangeland burning was not well defined and so the comparison is not exact. The remote sensing data also provided verification of our existing diurnal profile for crop residue burning emissions used in chemical transport modeling. In addition, the entire database used to estimate this sector of emissions is available on EPA’s Clearinghouse for Inventories and Emission Factors (CHIEF, http://www3.epa.gov/ttn/chief/index.html).Implications: Estimates of crop residue burning and rangeland burning emissions can be improved by using satellite detections. Local information is helpful in distinguishing crop residue and rangeland burning from all other types of fires.  相似文献   

3.
Large auxiliary engines operated on ocean-going vessels in transit and at berth impact the air quality of populated areas near ports. This paper presents new information on the comparison of emission ranges from three similar engines and the effectiveness of three control technologies: switching to cleaner burning fuels, operating in the low oxides of nitrogen (NOx) mode, and selective catalytic reduction (SCR). In-use measurements of gaseous (NOx, carbon monoxide [CO], carbon dioxide [CO2]) and fine particulate matter (PM2.5; total and speciated) emissions were made on three auxiliary engines on post-PanaMax class container vessels following the International Organization for Standardization-8178-1 protocol. The in-use NOx emissions for the MAN B&W 7L32/40 engine family vary from 15 to 21.1 g/kW-hr for heavy fuel oil and 8.9 to 19.6 g/kW-hr for marine distillate oil. Use of cleaner burning fuels resulted in NOx reductions ranging from 7 to 41% across different engines and a PM2.5 reduction of up to 83%. The NOx reductions are a consequence of fuel nitrogen content and engine operation; the PM2.5 reduction is attributed to the large reductions in the hydrated sulfate and organic carbon (OC) fractions. As expected, operating in the low-NOx mode reduced NOx emissions by approximately 32% and nearly doubled elemental carbon (EC) emissions. However, PM2.5 emission factors were nearly unchanged because the EC emission factor is only approximately 5% of the total PM2.5 mass. SCR reduced the NOx emission factor to less than 2.4 g/kW-hr, but it increased the PM2.5 emissions by a factor of 1.5-3.8. This increase was a direct consequence of the conversion of sulfur dioxide to sulfate emissions on the SCR catalyst. The EC and OC fractions of PM2.5 reduced across the SCR unit.  相似文献   

4.
Emission from field burning of crop residue, a common practice in many parts of the world today, has potential effects on air quality, atmosphere and climate. This study provides a comprehensive size and compositional characterization of particulate matter (PM) emission from rice straw (RS) burning using both in situ experiments (11 spread field burning) and laboratory hood experiments (3 pile and 6 spread burning) that were conducted during 2003-2006 in Thailand. The carbon balance and emission ratio method was used to determine PM emission factors (EF) in the field experiments. The obtained EFs varied from field to hood experiments reflecting multiple factors affecting combustion and emission. In the hood experiments, EFs were found to be depending on the burning types (spread or pile), moisture content and the combustion efficiency. In addition, in the field experiments, burning rate and EF were also influenced by weather conditions, i.e. wind. Hood pile burning produced significantly higher EF (20±8 g kg(-1) RS) than hood spread burning (4.7±2.2 g kg(-1) RS). The majority of PM emitted from the field burning was PM(2.5) with EF of 5.1±0.7 g m(-2) or 8.3±2.7 g kg(-1) RS burned. The coarse PM fraction (PM(10-2.5)) was mainly generated by fire attention activities and was relatively small, hence the resulting EF of PM(10) (9.4±3.5 g kg(-1) RS) was not significantly higher than PM(2.5). PM size distribution was measured across 8 size ranges (from <0.4 μm to >9.0 μm). The largest fractions of PM, EC and OC were associated with PM(1.1). The most significant components in PM(2.5) and PM(10) include OC, water soluble ions and levoglucosan. Relative abundance of some methoxyphenols (e.g., acetylsyringone), PAHs (e.g., fluoranthene and pyrene), organochlorine pesticides and PCBs may also serve as additional signatures for the PM emission. Presence of these toxic compounds in PM of burning smoke increases the potential toxic effects of the emission. For illustration, an estimation of the annual RS field burning in Thailand was made using the obtained in situ field burning EFs and preliminary burning activity data.  相似文献   

5.
The emissions from burning the residue following grass-seed harvest were determined by means of a combined laboratory-field study. Samples of the straw and stubble residue were burned in the laboratory burning tower at the University of California at Riverside. Complete analyses were determined for gaseous and particulate emissions for the important grass species from the Willamette Valley of Oregon. Particulate emissions averaged 15.6 lb/ton of fuel burned. Carbon monoxide averaged 101 lb/ton of fuel burned. Hydrocarbon emission averages, in pounds per ton of fuel burned, were 1.74 for saturates plus acetylene, 2.80 for defines, and 1.68 for ethylene. The NOx emission, at the temperature peak during the burn, averaged 29.3 ppm. Field studies, conducted by personnel from Oregon State University, measured only particulate emissions, carbon dioxide, and temperature over the burn. The carbon dioxide values were found to be similar to those obtained on the burning table at UCR and it was therefore concluded that the other gaseous emissions were similar and could be used as reasonably accurate for emission inventories. The temperature values obtained in the laboratory and field were also similar and further justifies extrapolating the burning table data to field situations. The particulate matter collected in the field studies averaged 15.55 lb of particulate per ton of fuel burned. This is the same average obtained for the burning table data which again serves to validate the emissions reported from Riverside. Much more variability was found in the particulate emissions obtained in the field which reflects the wider range of environmental conditions encountered in the field.  相似文献   

6.
The shipping industry has been an unrecognized source of criteria pollutants: nitrogen oxides (NOx), volatile organic compounds, coarse particulate matter (PM10), fine particulate matter (PM2.5), sulfur dioxide (SO2), and carbon monoxide (CO). Liquefied natural gas (LNG) has traditionally been transported via steam turbine (ST) ships. Recently, LNG shippers have begun using dual-fuel diesel engines (DFDEs) to propel and offload their cargoes. Both the conventional ST boilers and DFDE are capable of burning a range of fuels, from heavy fuel oil to boil-off-gas (BOG) from the LNG load. In this paper a method for estimating the emissions from ST boilers and DFDEs during LNG offloading operations at berth is presented, along with typical emissions from LNG ships during offloading operations under different scenarios ranging from worst-case fuel oil combustion to the use of shore power. The impact on air quality in nonattainment areas where LNG ships call is discussed. Current and future air pollution control regulations for ocean-going vessels (OGVs) such as LNG ships are also discussed. The objective of this study was to estimate and compare emissions of criteria pollutants from conventional ST and DFDE ships using different fuels. The results of this study suggest that newer DFDE ships have lower SO2 and PM2.5/PM10 emissions, conventional ST ships have lower NOx, volatile organic compound, and CO emissions; and DFDE ships utilizing shore power at berth produce no localized emissions because they draw their required power from the local electric grid.  相似文献   

7.
Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects.  相似文献   

8.
Particulate matter (PM) has long been recognized as an air pollutant due to its adverse health and environmental impacts. As emission of PM from agricultural operations is an emerging air quality issue, the Agricultural Particulate Matter Emissions Indicator (APMEI) has been developed to estimate the primary PM contribution to the atmosphere from agricultural operations on Census years and to assess the impact of practices adopted to mitigate these emissions at the soil landscape polygon scale as part of the agri-environmental indicator report series produced by Agriculture and Agri-Food Canada. In the APMEI, PM emissions from animal feeding operations, wind erosion, land preparation, crop harvest, fertilizer and chemical application, grain handling, and pollen were calculated and compared for the Census years of 1981-2006. In this study, we present the results for PM10 and PM2.5, which exclude chemical application and pollen sources as they only contribute to total suspended particles. In 2006, PM emissions from agricultural operations were estimated to be 652.6 kt for PM10 and 158.1 kt for PM2.5. PM emissions from wind erosion and land preparation account for most of PM emissions from agricultural operations in Canada, contributing 82% of PM10 and 76% of PM2.5 in 2006. Results from the APMEI show a strong reduction in PM emissions from agricultural operations between 1981 and 2006, with a decrease of 40% (442.8 kt) for PM10 and 47% (137.7 kt) for PM2.5. This emission reduction is mainly attributed to the adoption of conservation tillage and no-till practices and the reduction in the area of summer fallow land.  相似文献   

9.
An inventory of air pollutants emitted from forest and agricultural fires in Northeastern Mexico for the period of January to August of 2000 is presented. The emissions estimates were calculated using an emissions factor methodology. The inventory accounts for the emission of carbon monoxide (CO), methane, nonmethane hydrocarbons, ammonia, nitrogen oxides, and particulate matter (PM). Particulate matter emissions include estimates for fine PM and coarse PM. A total of 2479 wildfires were identified in the domain for the period of interest, which represented approximately 810,000 acres burned and 621,130 short tons emitted (81% being CO). The main source of information used to locate and estimate the extent of the fires came from satellite imagery. A geographic information system was used to determine the type of vegetation burned by each fire. More than 54% of the total area burned during the period of study was land on the State of Tamaulipas. However, >58% of the estimated emissions came from the State of Coahuila. This was because of the mix of vegetation types burned in each state. With respect to the temporal distribution, 76.9% of the fires occurred during the months of April and May consuming almost 78% of the total area burned during the period of study. Analysis of wind forward trajectories of air masses passing through the burned areas and 850-mb wind reanalyses indicate possible transboundary transport of the emissions from Mexico to the United States during the occurrence of the major wildfires identified.  相似文献   

10.
Particulate matter (PM) has long been recognized as an air pollutant due to its adverse health and environmental impacts. As emission of PM from agricultural operations is an emerging air quality issue, the Agricultural Particulate Matter Emissions Indicator (APMEI) has been developed to estimate the primary PM contribution to the atmosphere from agricultural operations on Census years and to assess the impact of practices adopted to mitigate these emissions at the soil landscape polygon scale as part of the agri-environmental indicator report series produced by Agriculture and Agri-Food Canada. In the APMEI, PM emissions from animal feeding operations, wind erosion, land preparation, crop harvest, fertilizer and chemical application, grain handling, and pollen were calculated and compared for the Census years of 1981–2006. In this study, we present the results for PM10 and PM2.5, which exclude chemical application and pollen sources as they only contribute to total suspended particles. In 2006, PM emissions from agricultural operations were estimated to be 652.6 kt for PM10 and 158.1 kt for PM2.5. PM emissions from wind erosion and land preparation account for most of PM emissions from agricultural operations in Canada, contributing 82% of PM10 and 76% of PM2.5 in 2006. Results from the APMEI show a strong reduction in PM emissions from agricultural operations between 1981 and 2006, with a decrease of 40% (442.8 kt) for PM10 and 47% (137.7 kt) for PM2.5. This emission reduction is mainly attributed to the adoption of conservation tillage and no-till practices and the reduction in the area of summerfallow land.

Implications: Increasing sustainability in agriculture often means adapting management practices to have a beneficial impact on the environment while maintaining or increasing production and economic benefits. We developed an inventory of primary PM emissions from agriculture in Canada to better quantify the apportionment, spatial distribution, and trends for Census years 1981–2006. We found major reductions of 40% in PM10 and 47% in PM2.5 emissions over the 25-yr period as a co-benefit of increasing carbon sequestration in agricultural soils. Indeed, farmers adopted conservation tillage/no-till practices, increased usage of cover crops, and reduced summerfallow, in order to increase soil organic matter and reduce carbon dioxide emissions, which also reduced primary PM emissions, although the agricultural production increased over the period.  相似文献   

11.
Boiler briquette coal versus raw coal: Part I--Stack gas emissions   总被引:1,自引:0,他引:1  
Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.  相似文献   

12.
Abstract

An inventory of air pollutants emitted from forest and agricultural fires in Northeastern Mexico for the period of January to August of 2000 is presented. The emissions estimates were calculated using an emissions factor methodology. The inventory accounts for the emission of carbon monoxide (CO), methane, nonmethane hydrocarbons, ammonia, nitrogen oxides, and particulate matter (PM). Particulate matter emissions include estimates for fine PM and coarse PM. A total of 2479 wildfires were identified in the domain for the period of interest, which represented ~810,000 acres burned and 621,130 short tons emitted (81% being CO). The main source of information used to locate and estimate the extent of the fires came from satellite imagery. A geographic information system was used to determine the type of vegetation burned by each fire. More than 54% of the total area burned during the period of study was land on the State of Tamaulipas. However, >58% of the estimated emissions came from the State of Coahuila. This was because of the mix of vegetation types burned in each state. With respect to the temporal distribution, 76.9% of the fires occurred during the months of April and May consuming almost 78% of the total area burned during the period of study. Analysis of wind forward trajectories of air masses passing through the burned areas and 850-mb wind reanalyses indicate possible transboundary transport of the emissions from Mexico to the United States during the occurrence of the major wildfires identified.  相似文献   

13.
Greenhouse gas (GHG) emissions from agricultural production operations are recognized as an important air quality issue. A new technique following the U.S. Environmental Protection Agency Method TO-14A was used to measure GHG emissions from ground-level area sources (GLAS) in a free-stall dairy operation in central Texas. The objective of this study was to quantify and report GHG emission rates (ERs) from the dairy during the summer and winter using this protocol. A weeklong sampling was performed during each season. A total of 75 and 66 chromatograms of air samples were acquired from six delineated GLAS (loafing pen, walkway, barn, silage pile, settling basin, and lagoon) of the same dairy during summer and winter, respectively. Three primary GHGs--methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O)--were identified from the dairy operation during the sampling periods. The estimated overall ERs for CH4, CO2, and N2O during the summer for this dairy were 274, 6005, and 7.96 g head(-1)day(-1), respectively. During the winter, the estimated overall CH4, CO2, and N2O ERs were 52, 7471, and 3.59 g head(-1)day(-1), respectively. The overall CH4 and N2O ERs during the summer were approximately 5.3 and 2.2 times higher than those in the winter for the free-stall dairy. These seasonal variations were likely due to fluctuations in ambient temperature, dairy manure loading rates, and manure microbial activity of GLAS. The annualized ERs for CH4, CO2, and N2O for this dairy were estimated to be 181, 6612, and 6.13 g head(-1)day(-1), respectively. Total GHG emissions calculated for this dairy with 500 cows were 2250 t of carbon dioxide equivalent (CO2e) per year.  相似文献   

14.
Biomass burning is a common agricultural practice, because it allows elimination of postharvesting residues; nevertheless, it involves an inefficient combustion process that generates atmospheric pollutants emission, which has implications on health and climate change. This work focuses on the estimation of emission factors (EFs) of PM2.5, PM10, organic carbon (OC), elemental carbon (EC), carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) of residues from burning alfalfa, barley, beans, cotton, maize, rice, sorghum, and wheat in Mexico. Chemical characteristics of the residues were determined to establish their relationship with EFs, as well as with the modified combustion efficiency (MCE). Essays were carried out in an open combustion chamber with isokinetic sampling, following modified EPA 201-A method. EFs did not present statistical differences among different varieties of the same crop, but were statistically different among different crops, showing that generic values of EFs for all the agricultural residues can introduce significant uncertainties when used for climatic and atmospheric pollutant inventories. EFs of PM2.5 ranged from 1.19 to 11.30 g kg?1, and of PM10 from 1.77 to 21.56 g kg?1. EFs of EC correlated with lignin content, whereas EFs of OC correlated inversely with carbon content. EFs of EC and OC in PM2.5 ranged from 0.15 to 0.41 g kg?1 and from 0.33 to 5.29 g kg?1, respectively, and in PM10, from 0.17 to 0.43 g kg?1 and from 0.54 to 11.06 g kg?1. CO2 represented the largest gaseous emissions volume with 1053.35–1850.82 g kg?1, whereas the lowest was CH4 with 1.61–5.59 g kg?1. CO ranged from 28.85 to 155.71 g kg?1, correlating inversely with carbon content and MCE. EFs were used to calculate emissions from eight agricultural residues burning in the country during 2016, to know the potential mitigation of climatic and atmospheric pollutants, provided this practice was banned.

Implications: The emission factors of particles, short-lived climatic pollutants, and atmospheric pollutants from the crop residues burning of eight agricultural wastes crops, determined in this study using a standardized method, provides better knowledge of the emissions of those species in Latin America and other developing countries, and can be used as inputs in air quality models and climatic studies. The EFs will allow the development of more accurate inventories of aerosols and gaseous pollutants, which will lead to the design of effective mitigation strategies and planning processes for sustainable agriculture.  相似文献   

15.
Multi-year inventories of biomass burning emissions were established in the Pearl River Delta (PRD) region for the period 2003–2007 based on the collected activity data and emission factors. The results indicated that emissions of sulfur dioxide (SO2), nitrogen oxide (NOx), ammonia (NH3), methane (CH4), organic carbon (OC), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), and fine particulate matter (PM2.5) presented clear declining trends. Domestic biofuel burning was the major contributor, accounting for more than 60% of the total emissions. The preliminary temporal profiles were established with MODIS fire count information, showing that higher emissions were observed in winter (from November to March) than other seasons. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3  km, using GIS-based land use data as spatial surrogates. Large amount of emissions were observed mostly in the less developed areas in the PRD region. The uncertainties in biomass burning emission estimates were quantified using Monte Carlo simulation; the results showed that there were higher uncertainties in organic carbon (OC) and elemental carbon (EC) emission estimates, ranging from ?71% to 133% and ?70% to 128%, and relatively lower uncertainties in SO2, NOx and CO emission estimates. The key uncertainty sources of the developed inventory included emission factors and parameters used for estimating biomass burning amounts.  相似文献   

16.
In this paper, methane emissions from municipal wastewater treatment plants and municipal solid waste (MSW) landfills in Jordan for 1994 have been estimated using the methodology developed by the Intergovernmental Panel on Climate Change (IPCC). For this purpose, the 14 domestic wastewater treatment plants in the country were surveyed. Generation rates and characterization of MSW components as well as dumping and landfilling practices were surveyed in order to estimate 1994 CH4 emissions from these sites. Locally available waste statistics were used in cases where those of the IPCC guidelines were not representative of Jordan's statistics. Methane emissions from domestic wastewater in Jordan were estimated at 4.66 gigagrams (Gg). Total 1994 CH4 emissions from MSW management facilities in Jordan are estimated at 371.76 Gg--351.12 Gg (94.45%) from sanitary landfills, 19.83 Gg (5.33%) from MSW open dumps, and 0.81 Gg (0.22%) from raw sewage-water dumping ponds. Uncertainties associated with these estimations are presented.  相似文献   

17.
Agricultural opportunities to mitigate greenhouse gas emissions   总被引:15,自引:0,他引:15  
Agriculture is a source for three primary greenhouse gases (GHGs): CO(2), CH(4), and N(2)O. It can also be a sink for CO(2) through C sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestration, providing a perspective on how agriculture can reduce its GHG burden and how it can help to mitigate GHG emissions through conservation measures. Impacts of agricultural practices and systems on GHG emission are reviewed and potential trade-offs among potential mitigation options are discussed. Conservation practices that help prevent soil erosion, may also sequester soil C and enhance CH(4) consumption. Managing N to match crop needs can reduce N(2)O emission and avoid adverse impacts on water quality. Manipulating animal diet and manure management can reduce CH(4) and N(2)O emission from animal agriculture. All segments of agriculture have management options that can reduce agriculture's environmental footprint.  相似文献   

18.
This paper discusses agriculture's share in the world-wide emissions of climate-affecting gases and in the global warming potential (GWP). Proposals also are presented to reduce these emissions adequately, using a cause-oriented approach. Largely due to the fertilization and cultivation of agriculture as well as the burning of biomass, agriculture has a very high share in the anthropogenic emissions of NH(3), N(2)O, CH(4) and CO at >95%, 81%, 70% and 52%, respectively, while its share in the NO(x) and CO(2) emissions is relatively small at 35% and 21%. The GWP of agriculture, based on annually 16.1 x 10(9) tons of CO(2), approaches 63% of the GWP of the energy sector or 80% of the GWP of its CO(2) emissions. At 34% and 32%, respectively, the main originators in the GWP of agriculture would seem to be CO(2) (changing land use) and CH(4) (animal husbandry/rice cropping/biomass burning) followed at 15% by NO(2) (technical and biological N fixation/(cultivation and recultivation/biomass burning) and 10% and 9% by CO and NO(x). The GWP of 3 German dairy cows corresponds with 13.2 tonnes CO(2) per year the GWP of two average German automobiles. However, the ozone-destroying effect of N(2)O and the climate-relevant effects of NH(3) are not yet included here. As with the therapy for other 'modern' boundary-crossing environmental damages, such as acidification or eutrophication, global climate change therapy likewise needs a therapy for the respective effects of reactive compounds of carbon, nitrogen, phosphorous, and sulfur also emitted by agriculture. Proposals for reducing these emissions within the agricultural sector include need-oriented plant, animal and human nutrition, more efficient external and internal nutrient recycling, the cessation of further clearing by burning, along with intensified afforestation mainly in the tropics, targeted measures to reduce nutrient losses/emissions, and measures for more efficient use of nutrients in plant, animal and human nutrition. These measures would at best result in reduced pollution of the global environment but not put it to an end. Decisive, therefore, is both the tolerable extent of mankind and its long-term sustainable way of life.  相似文献   

19.
Agricultural wastes from orchards, grain fields, and range lands are burned each year in California as the most practical means of ridding the land of these wastes. In order to determine the relative contribution of the burning of such material to photochemical air pollution, the effluent from 1 23 fires of known weights of range brush, both dry and green, barley and rice stubble, and prunings from various fruit and nut trees were monitored in a special tower which provided an open burning situation. Analyses were made for total hydrocarbon, expressed as C, by flame ionization detection, and for 24 individual hydrocarbons by gas chromatography, as well as for CO and CO2 by infrared spectroscopy. A few analyses were made for oxides of nitrogen. These data, coupled with temperature and airflow measurements, allowed calculations to be made on pounds of effluent per ton of material burned and demonstrated that the emissions from agricultural burning are much less than those from the automobile, a principal source of such emissions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号