首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A novel system for continuous and controlled free-air fumigation of mature tree canopies with ozone is described. Ozone generated from oxygen is diluted with air in a pressurized tank and conducted into the canopies by a system of 100 PTFE tubes hanging down from a grid fixed above the crowns. With 45 calibrated outlets per tube providing a constant flow of 0.3 l/min each, a total volume of about 10*10*15 m3 comprising 5 beech and 5 spruce canopies is fumigated. The spatial ozone distribution in the fumigated volume as well as surrounding reference tree canopies is controlled by continuous measuring instruments installed at 4 levels and a dense array of passive samplers. The system will later be used for CO2 fumigation as well. Results of the first year of continuous operation, with 2 * ambient ozone levels having been achieved, are reported.  相似文献   

2.
In the context of global climate change, an understanding of the long-term effects of increasing concentrations of atmospheric trace gases (carbon dioxide, CO(2), ozone, O(3), oxides of nitrogen, NO(x) etc.) on both cultivated and native vegetation is of utmost importance. Over the years, under field conditions, various trace gas-vegetation exposure methodologies with differing advantages and disadvantages have been used. Because of these variable criteria, with elevated O(3) or CO(2) levels, at the present time the approach of free-air experimental-release of the gas into study plots is attracting much attention. However, in the case of CO(2), this approach (using 15 m diameter study plot with a single circular array of vent pipes) has proven to be cost prohibitive (about 59000-98000 dollars/year/replicate) due to the consumption of significant quantities of the gas to perform the experiment (CO(2) level elevated to 400 ppm above the ambient). Therefore, in this paper, we present a new approach consisting of a dual, concentric exposure array of vertical risers or vent pipes. The purpose of the outer array (17 m diameter) is to vent ambient air outward and toward the incoming wind, thus providing an air curtain to reduce the velocity of that incoming wind to simulate the mode or the most frequently occurring wind speed at the study site. The inner array (15 m diameter) vents the required elevated levels of trace gases (CO(2), O(3), etc.) into the study plot. This dual array system is designed to provide spatial homogeneity (shown through diffusion modeling) of the desired trace-gas levels within the study plot and to also reduce its consumption. As an example, while in the single-array free-air CO(2)-release system the consumption of CO(2) to elevate its ambient concentration by 400 ppm is calculated to be about 980 tons/year/replicate, it is estimated that in the dual array system it would be approximately 590 tons/year/replicate. Thus, the dual array system may provide substantial cost savings (24000-39000 dollars/year/replicate) in the CO(2) consumption (60-100 dollars/ton of CO(2)) alone. Similarly, benefits in the requirements of other trace gases (O(3), NO(x), etc.) are expected, in future multivariate studies on global climate change.  相似文献   

3.
Branch-level gas exchange provided the basis for assessing ozone flux in order to derive the dose-response relationship between cumulative O3 uptake (COU) and carbon gain in the upper sun crown of adult Fagus sylvatica. Fluxes of ozone, CO2 and water vapour were monitored simultaneously by climatized branch cuvettes. The cuvettes allowed branch exposure to an ambient or twice-ambient O3 regime, while tree crowns were exposed to the same O3 regimes (twice-ambient generated by a free-air canopy O3 exposure system). COU levels higher than 20mmolm(-2) led to a pronounced decline in carbon gain under elevated O3. The limiting COU range is consistent with findings on neighbouring branches exposed to twice-ambient O3 through free-air fumigation. The cuvette approach allows to estimate O3 flux at peripheral crown positions, where boundary layers are low, yielding a meso-scale within-crown resolution of photosynthetic foliage sensitivity under whole-tree free-air O3 fumigation.  相似文献   

4.
The effects of elevated concentrations of atmospheric tropospheric ozone (O3) on DNA damage in five trembling aspen (Populus tremuloides Michx.) clones growing in a free-air enrichment experiment in the presence and absence of elevated concentrations of carbon dioxide (CO2) were examined. Growing season mean hourly O3 concentrations were 36.3 and 47.3 ppb for ambient and elevated O3 plots, respectively. The 4th highest daily maximum 8-h ambient and elevated O3 concentrations were 79 and 89 ppb, respectively. Elevated CO2 averaged 524 ppm (+150 ppm) over the growing season. Exposure to O3 and CO2 in combination with O3 increased DNA damage levels above background as measured by the comet assay. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O3 compared with ambient air; whereas less tolerant clone 216 and sensitive clones 42E and 259 had comparably lower levels of DNA damage with no significant differences between elevated O3 and ambient air. Clone 8L was demonstrated to have the highest level of excision DNA repair. In addition, clone 271 had the highest level of oxidative damage as measured by lipid peroxidation. The results suggest that variation in cellular responses to DNA damage between aspen clones may contribute to O3 tolerance or sensitivity.  相似文献   

5.
The effect of free-air ozone fumigation and crown position on antioxidants were determined in old-growth spruce (Picea abies) trees in the seasonal course of two consecutive years (2003 and 2004). Levels of total ascorbate and its redox state in the apoplastic washing fluid (AWF) were increased under double ambient ozone concentrations (2xO3), whilst ascorbate concentrations in needle extracts were unchanged. Concentrations of apoplastic and symplastic ascorbate were significantly higher in 2003 compared to 2004 indicating a combined effect of the drought conditions in 2003 with enhanced ozone exposure. Elevated ozone had only weak effects on total glutathione levels in needle extracts, phloem exudates and xylem saps. Total and oxidised glutathione concentrations were higher in 2004 compared to 2003 and seemed to be more affected by enhanced ozone influx in the more humid year 2004 compared to the combined effect of elevated ozone and drought in 2003 as observed for ascorbate.  相似文献   

6.
Greenhouse and ambient air experiments have shown ethylene diurea (EDU) to be a strong and specific protective suppressant of ozone injury in plants. To examine how EDU affects plant responses to various ozone (O(3)) levels under controlled field conditions, Phaseolus vulgaris L. cv. Lit was treated with 150 ppm EDU every 14 days and exposed in open-top chambers to charcoal-filtered air (CF), nonfiltered air (NF) or two cf treatments with ozone added. The ozone treatments were proportional additions of one (CF1) and two (CF2) times ambient ozone levels. The mean ozone concentrations in the CF, NF, CF1 and CF2 treatments were 0.98, 14.1, 14.98 and 31.56 nl litre(-1). A two-way split plot ANOVA revealed that shoot dry weight was significantly reduced by ozone. EDU treatment was highly significant for leaf dry weight, root dry weight and shoot dry weight, but not for pod dry weight; leading to a higher biomass of EDU-treated plants. Ozone/EDU interactions were significant for root weight only, indicating that EDU reduced growth suppression by ozone. These results show that EDU action on plant biomass could be interpreted as a delay in senescence since EDU-treated plants showed a significant decreased biomass loss even in the CF treatment.  相似文献   

7.
Since the 1960s, much effort has been devoted to collecting and formatting air quality data. This paper discusses 1) the availability of air quality data for assessing potential biological impacts associated with ozone and sulfur dioxide ambient exposures, 2) examples of how air quality data can be characterized for assessing vegetation effects, and 3) the limitations associated with some exposure parameters used for developing relevant vegetation doseresponse yield reduction models. Data are presented showing that some ozone monitoring sites not continuously affected by local urban sources experience consecutive hourly ozone exposures ≥0.10 ppm in the late evening and early morning hours. These sites experience their maximum ozone concentrations either in the spring or summer months. Sites influenced by local rural sources experience their maximum ozone concentrations during the summer months. It is suggested that further research be performed to identify whether the sensitivity of a target organism at the time of exposure, as well as the pollutant concentration and chemical form that enters into the target organism, is as important in defining effects as air pollutant exposure alone.  相似文献   

8.
Prior exposure to ozone has been reported to increase the mortality in mice from aerosolized streptococci. The experiments described herein were undertaken to determine the effect of meteorological variables on this ozone-streptococcus model. The work was performed in replicate experiments employing four treatments. The treatments consisted of exposure to (1) ambient temperature and air, (2) ambient temperature and ozone, (3) cold and ambient air, and (4) cold and ozone, and streptococcus. The streptococcus was administered to each treatment as an aerosolized culture for 30 minutes and yielded approximately 30,000 organisms per mouse. The cold exposure was three hours at 6 to 9°C, and the ozone exposure was 0.7 to 0.9 ppm for three hours. Results indicate a significant increase in mortality attributable to the influence of cold.  相似文献   

9.
Present critical levels for ozone (O3) for protecting vegetation against adverse effects are based on exposure-response relationships mainly derived from open-top chamber experiments and are expressed as an Accumulated exposure Over a Threshold of 40 ppb (AOT40). In that context with a revision of the UN (United Nations)-ECE (Economic Commission for Europe) Gothenburg protocol, AOT40 values should be replaced by flux-oriented quantities, i.e. in the end by critical loads. At present, the database for the derivation of critical loads for O3 is extremely inadequate. Furthermore, the currently available flux-response relationships are also derived from open-top chamber experiments. The use of a relationship for spring wheat in a risk assessment for an agricultural site in Hesse, Germany, demonstrates in principle, the applicability of the critical load concept for O3. Comparisons of diurnal variation of stomatal uptake and AOT40 showed that a major part of toxicologically effective stomatal uptake occurred before noon whereas the AOT40 values were dominated by the O3 concentrations during afternoon. In other words, the AOT40 exposure index do not adequately address the O3 burden during hours when plants are sensitive to O3 uptake. However, due to the differences in radiation, air temperature and humidity between the chamber and the ambient microclimates, a derivation of flux-response relationships from chamber experiments is likely to be questionable, especially for species rich ecosystems: Here, without any changes in the pollution climate, significant modifications of species composition as well as an earlier beginning of the growing season has been previously observed. To overcome the problems associated with chamber-derived flux-response relationships, a new experimental and modelling concept, was developed. The approach, briefly described in this paper, combines methods in air pollution toxicology and micrometeorology. As an analogy to the free-air fumigation concept, O3 is released into the air by an injection system above the plant canopy. The assessment of dispersion and surface deposition of O3 released is based on Lagrangian trajectory modelling. Depending on wind direction and velocity, atmospheric stratification and surface roughness, without any disturbance of the microclimate and micrometeorology, several sub-areas can be identified around the source position with differing deposition rates above the ambient level. Taking into account the actual O3 background deposition, deposition rates and vegetation responses observed in these sub-areas can easily be used to derive flux-effect relationships under ambient conditions and more realistic limiting values to protect our environment.  相似文献   

10.
Abstract

To evaluate methods of reducing exposure of school children in southwest Mexico City to ambient ozone, outdoor ozone levels were compared to indoor levels under three distinct classroom conditions: windows/doors open, air cleaner off; windows/doors closed, air cleaner off; windows/ doors closed, air cleaner on. Repeated two-minute average measurements of ozone were made within five minutes of each other inside and outside of six different school classrooms while children were in the room. Outdoor ozone two-minute average levels varied between 64 and 361 ppb; mean outdoor levels were above 160 ppb for each of the three conditions. Adjusting for outdoor relative humidity, for a mean outdoor ozone concentration of 170 ppb, the mean predicted indoor ozone concentrations were 125.3 (±5.7) ppb with windows/doors open; 35.4 (±4.6) ppb with windows/ doors closed, air cleaner off; and 28.9 (±4.3) ppb with windows/ doors closed, air cleaner on. The mean predicted ratios of indoor to outdoor ozone concentrations were 0.71 (±0.03) with windows/doors open; 0.18 (±0.02) ppb with windows/doors closed, air cleaner off; and 0.15 (±0.02) ppb with windows/doors closed, air cleaner on. As outdoor ozone concentrations increased, indoor ozone concentrations increased more rapidly with windows and doors open than with windows and doors closed. Ozone exposure in Mexican schools may be significantly reduced, and can usually be kept below the World Health Organization (WHO) guideline of 80 ppb, by closing windows and doors even when ambient ozone levels reach 30Q ppb or more.  相似文献   

11.
Air quality standards are established to prevent or minimize the risk of adverse effects from air pollution to human health, vegetation, and materials. In order to develop standards which provide an adequate measure of protection to vegetation, it is necessary to define, in as precise terms as possible, the relationship between ambient air quality and the potential for adverse effects on vegetation. Based on recent evidence published in the literature, as well as retrospective studies using data from the National Crop Loss Assessment Network (NCLAN), cumulative indices can be used to describe exposures of ozone for predicting agricultural crop effects. However, the mathematical form of the standard that may be proposed to protect crops does not necessarily have to be of the same form as that used in the statistical or process oriented mathematical models that relate ambient ozone exposures with vegetation effects. This paper discusses the limitations associated with applying a simple statistic that may take the place of a more biologically meaningful exposure parameter. While the NCLAN data have been helpful in identifying indices that may be appropriate for establishing exposure-response relationships, the limitations associated with the NCLAN protocol need to be considered when attempting to apply these relationships in the establishment of a secondary national ambient air quality standard. The Weibull model derived from NCLAN experiments must demonstrate its generality and universal applicability. Furthermore, its predictive power must be tested using independent sets of field data.  相似文献   

12.
California's Phase 2 Reformulated Gasoline (CaRFG), introduced early in 1996, represents an important step toward attainment of ozone standards. Studies of vehicle emissions and ambient air quality data have reported substantial reductions of ozone precursors due to CaRFG. This study uses daily measurements of regional ozone and meteorology to estimate the effect of CaRFG on ozone concentrations in three areas of California. In each area, a regression model was used to partially account for the daily effects of meteorology on area-wide ozone maxima for May-October. The statistical models are based on combinations of air temperature aloft (approximately 5000 ft), surface air temperatures, and surface wind speeds. Estimated ozone benefits were attributed to CaRFG after accounting for meteorology, which improved the precision of the estimates by approximately 37-57% based on a resampling analysis. The ozone benefits were calculated as the difference in ozone times the proportion of the reductions of hydrocarbons and nitrogen oxides attributed to CaRFG by the best available emission inventories. Ozone benefits attributed to CaRFG (with approximately 90% confidence) are 8-13% in the Los Angeles area, -2-6% in the San Francisco Bay area overall with greater benefits in two major subregions, and 3-15% in the Sacramento area.  相似文献   

13.
Spring wheat (Triticum aestivum L. cv. Minaret) was exposed to three CO(2) levels, in combination with two nitrogen fertilizer levels and two levels of tropospheric ozone, from sowing to ripening in open-top chambers. Three additional nitrogen fertilizer treatments were carried out at the lowest and the highest CO(2) level, respectively. Plants were harvested at growth stages 31, 65 and 93 and separated into up to eight fractions to gain information about biomass partitioning. CO(2) enrichment (263 microl litre(-1) above ambient levels) drastically increased biomass of organs serving as long-term carbohydrate pools. Peduncle weight increased by 92%, stem weight by 73% and flag leaf sheath weight by 59% at growth stage 65. Average increase in shoot biomass due to CO(2) enrichment amounted to 51% at growth stage 65 and 36% at final harvest. Average yield increase was 34%. Elevated nitrogen application was most effective on biomass of green tissues. Yield was increased by 30% when nitrogen application was increased from 150 to 270 kg N ha(-1). Significant interactions were observed between CO(2) enrichment and nitrogen application. Yield increase due to CO(2) ranged from 23% at 120 kg N to 47% at 330 kg N. Triticum aestivum cv. Minaret was not very responsive to ozone at 1.5 times ambient levels. 1000 grain weight was slightly decreased, which was compensated by an increased number of grains.  相似文献   

14.
Spring wheat (Triticum aestivum L.) cv. Turbo was exposed to different levels of ozone and water supply in open-top chambers in 1991. The plants were grown either in charcoal filtered air (CF), not filtered air (NF), in charcoal filtered air with proportional addition of ambient ozone (CF1), or in charcoal filtered air with twice proportional addition of ambient ozone (CF2). The mean seasonal ozone concentrations (24 h mean) were 2.3, 20.6, 17.3, and 24.5 nl litre(-1) for CF, NF, CF1, and CF2 treatments, respectively. Ozone enhanced senescence and reduced growth and yield of the wheat plants. At final harvest, dry weight reductions were mainly due to reductions in ear weight. Grain yield loss by ozone mainly resulted from depressions of 1000 grain weight, whereas numbers of ears per plant and of grains per ear remained unchanged. Pollutants other than ozone did not alter the response to ozone, as was obvious from comparisons between CF1 and NF responses. Water stress alone did not enhance senescence, but also reduced growth and yield. However, yield loss mainly resulted from reductions in the number of ears per plant; 1000 grain weight was not influenced by water stress. No water supply by ozone treatment interactions were detected for any of the estimated parameters.  相似文献   

15.
Chongqing, a city with a population of >2.5 million, constitutes the biggest industrial and commercial centre in southwest China. Recent industrialization has led to an increasing air pollutant problem which is exacerbated by the topography and prevailing climate of the region. To date, interest has remained firmly focused on the levels of traditional air pollutants (sulphur dioxide [SO2], oxides of nitrogen [NOx], smoke and suspended particulate matter [SPM]), with little attention paid to photochemical oxidants such as ozone (O3). This paper reports the first assessment of ambient O3 levels in southwest China. Measurements were made in and around Chongqing using a combination of UV-absorption (at a site located in the northern sector of the city) and passive samplers (at 20 sites located in and around the city) between 1993 and 1996. The 7-h daily mean O3 concentrations ranged between 2 and 16 ppb (x10(9)) during the winter months, increasing to 18-41 ppb during the summer (June-August), when peak hourly mean O3 concentrations of 93 ppb were attained. Ozone exposures across the region commonly approached (or exceeded) UN-ECE and WHO short-term guidelines for the protection of crops. In addition, controlled chamber studies, in which 11 cultivars of Chinese crops commonly grown in the Chongqing region were screened for relative O3 sensitivity, indicated the potential for subtle effects on the growth of a number of crop plants, if ambient O3 levels continue to rise in the region. Employing ozone exposures somewhat higher than those experienced in the field, several cultivars of commonly grown Chinese cereal, vegetable and salad crops were found to be sensitive to O3 in terms of growth, but this was not always associated with the appearance of visible symptoms of injury and, in contrast to what was generally expected, only three species showed significant O3-induced reductions in root:shoot partitioning. There is a clear and urgent need for a comprehensive study of ambient air quality and its impact on crops and natural vegetation in this, as in other, rapidly developing regions of China.  相似文献   

16.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides x nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (experiment 1) and during 1989 and 1990 (experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season, then the plants were grown outdoors with ambient ozone in 1989. In experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season, then the plants were grown outdoors with ambient ozone in 1990. Chronic exposure to ozone caused the following changes (statistically significant in one or both experiments at p<0.05): (1) earlier leaf abscission, (2) decreased stem basal diameter, (3) decreased stem mass, (4) decreased internode length, (5) decreased shoot height p=0.005, and (6) decreased leaf size in the growing season following ozone treatment. There was also strong evidence that ozone increased the number of leaves produced p=0.055. Finally, there was some evidence that ozone increased the ratio of shoot mass to root mass p=0.093.  相似文献   

17.
Nali C  Balducci E  Frati L  Paoli L  Loppi S  Lorenzini G 《Chemosphere》2007,67(11):2169-2176
A biennial integrated survey, based on the use of vascular plants for the bioindication of the effects of tropospheric ozone together with the use of automatic analysers of ozone, as well as the mapping of lichen biodiversity was performed in the area of Castelfiorentino (Tuscany, central Italy). Photochemically produced ozone proved to be a fundamental presence during the warm season, with maximum hourly means reaching 114 ppb, exceeding the information threshold as fixed by EU: the use of supersensitive tobacco Bel-W3 confirmed the opportunity of carrying out detailed cost-effective monitoring surveys. The potential for didactical and educational implications of this methodology are appealing. Critical levels set up for the protection of vegetation have exceeded considerably. The comparison of biomass productivity in sensitive and resistant individuals (NC-S and NC-R white clover clones, in the framework of an European network) provided evidence that ambient ozone levels are associated with relevant reduction (up to 30%) in the performance of sensitive material; effects on flowering were also pronounced. The economic assessment of such an impact deserves attention. Mapping of epiphytic lichen biodiversity – which has been used to monitor air quality worldwide – was not related to ozone geographical distribution as depicted by tobacco response.  相似文献   

18.
A meta-analysis was conducted to quantitatively assess the effects of ethylenediurea (EDU) on ozone (O3) injury, growth, physiology and productivity of plants grown in ambient air conditions. Results indicated that EDU significantly reduced O3-caused visible injury by 76%, and increased photosynthetic rate by 8%, above-ground biomass by 7% and crop yield by 15% in comparison with non-EDU treated plants, suggesting that ozone reduces growth and yield under current ambient conditions. EDU significantly ameliorated the biomass and yield of crops and grasses, but had no significant effect on tree growth with an exception of stem diameter. EDU applied as a soil drench at a concentration of 200-400 mg/L has the highest positive effect on crops grown in the field. Long-term research on full-grown tree species is needed. In conclusion, EDU is a powerful tool for assessing effects of ambient [O3] on vegetation.  相似文献   

19.
The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.  相似文献   

20.
ABSTRACT

Relationships between ambient levels of selected air pollutants and pediatric asthma exacerbation in Atlanta were studied retrospectively. As a part of this study, temporal and spatial distributions of ambient ozone concentrations in the 20-county Atlanta metropolitan area during the summers of 1993, 1994, and 1995 were assessed. A universal kriging procedure was used for spatial interpolation of aerometric monitoring station data. In this paper, the temporal and spatial distributions of ozone are described, and regulatory and epidemiologic implications are discussed. For the study period, the Atlanta ozone nonattainment area based on the 1-h, exceedance-based standard of 0.12 ppm is estimated to expand—from 56% of the Atlanta MSA by area and 71% by population to 88% by area and 96% by population—under the new 8-h, concentration-based standard of 0.08 ppm. Regarding asthma exacerbation, a 4% increase in pediatric asthma rate per 20-ppb increase in ambient ozone concentration was observed (p-value = 0.001), with ambient ozone level representing a general indicator of air quality due to its correlations with other pollutants. The use of spatial ozone estimates in the epidemiologic analysis demonstrates the need for control of demographic covariates in spatiotem poral assessments of associations of ambient air pollutant concentrations with health outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号