首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km?2 year?1 in the Changjiang River basin, 107 to 223 kg N km?2 year?1 in the Huanghe River basin, and 412 to 1,219 kg N km?2 year?1 in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980–2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario.  相似文献   

2.
Closing Remarks     
Considerable attention has been paid in recent years to photochemical smog pollution close to the earth's surface and to stratospheric ozone depletion. There is reason to suspect that the next round of scientific concern will be devoted to the perturbations in the “free troposphere.” Tropospheric ozone has been building up in many regions of the northern hemisphere. Ozone changes in the upper troposphere will exert a considerable impact on global warming. This could affect moisture levels, cloud amount and distribution, precipitation, and atmospheric dynamics on different scales.

This paper analyzes: (1) the physical and chemical processes contributing to changes in tropospheric ozone concentration; (2) the observational evidence of previous ozone change; and (3) results drawn from computer modelling of past and future radiative forcing caused by rising ozone concentrations in the upper troposphere.

The solar and longwave radiative model developed by Wang et al. (1991) was used for calculating the change in radiative forcing to the troposphere-surface system that can be ascribed to changing concentrations in ozone and other greenhouse gases. Nitric oxide emission from aircraft are a prime suspect for the observed increases in upper tropospheric ozone. The inference can be drawn that a radiative forcing of 0.2 to 0.35 Wm-2 will result from a doubling of aircraft emissions over the next two decades. This will amount to 10 to 25 percent of the radiative forcing attributable to CO2 alone for the same period. The effect of doubling aircraft emissions will increase as stratospheric ozone concentrations recover from the recent buildup of harmful chlorofluorocarbons. A large fraction of the radiative forcing that occurred during the 1970 to 1990 period can be attributed to increases in tropospheric ozone as opposed to increases in other greenhouse gases.  相似文献   

3.
Peterson and Sabersky1 measured the concentrations of ozone, carbon monoxide, nitrogen oxide, and oxides of nitrogen under standard driving conditions in the Southern California area. They indicate that in an automobile with no inside source of carbon monoxide (CO), the interior concentrations will reflect those on the outside but in a more gradual manner. They did not record the rapid variations and high peaks in the interior that they did when samplings were taken from the outside. They reported that 25 ppm of CO was not often exceeded and the highest concentration of CO encountered was 45 ppm for a period of 3 min.  相似文献   

4.
The status of knowledge on photochemical ozone formation and the effects of nitrogen oxides and peroxyacyl nitrates on such formation have been evaluated. The literature is reviewed on
  • 1.(a) nonurban ozone and nitrogen oxide concentration distributions,(b) ozone lifetimes,(c) nitrogen oxide lifetimes, and(d) ozone formation in plumes as related to nitrogen oxide.
The modeling approaches applied to ozone formation
  • 1.(a) with urban plumes,
  • 2.(b) power plant plumes,
  • 3.(c) high pressure systems, and
  • 4.(d) during longerrange transport of ozone are discussed. In addition, models concerned with the contributions to ozone formation associated with reactions of natural hydrocarbons and nitrogen oxide near ground level and photochemical ozone formation associated with reactions of carbon monoxide and of more persistent organic species with nitrogen oxides in the free troposphere are considered.
It is concluded that urban plumes are major contributors to elevated ozone concentrations measured at nonurban locations, particularly during the passage of high pressure systems. Ozone can survive at significant concentration levels for more than one day of transport. However, the evidence for multiday ozone transport is to a large extent associated with transport over water.Ozone formation during the first day of transport does not appear to be limited by the availability of nitrogen oxides. However, it is likely that multiday formation and transport of ozone within the boundary layer is limited in duration because of the relatively short lifetimes of nitrogen oxides and peroxyacyl nitrates. Photochemical formation of ozone in the free troposphere may be an important contributor to longer-time average ozone concentrations in rural areas. These free tropospheric processes depend in part on anthropogenic sources of precursors and are especially sensitive to the vertical distribution of nitrogen oxides in the atmosphere.  相似文献   

5.
A new technique using ground-based FTIR spectroscopy has been developed to investigate the vertical distribution of carbon monoxide in the atmosphere. Complementary measurements of atmospheric emission and solar absorption over the infrared region have been carried out sequentially to determine the amounts of carbon monoxide in the lower and upper atmosphere. The method is based on the fact that the two techniques of remote sensing are inherently sensitive to the carbon monoxide amount in different regions of the atmosphere. The measurements have been made under summertime conditions at a northern mid-latitude rural setting with a relatively pollution-free atmosphere. The total zenith column amount was determined to be 1.84×1018 molecules cm-2±7% which was based on the solar absorption measurement. From the analysis of the thermal emission spectrum, which is sensitive to carbon monoxide only in the lower troposphere, a zenith column amount of 1.01×1018 molecules cm-2±10% was estimated for the first 4.8 km of the atmosphere; this corresponded to an average carbon monoxide mixing ratio of 118 ppbv. Comparing the results of the two measurements indicated that a zenith column amount 8.3×1017 molecules cm-2±20%, or an average mixing ratio of 66 ppbv, was present in the free troposphere above an altitude of 4.8 km. These results are consistent with those reported for other northern mid-latitude locations using various in situ and solar absorption measuring techniques.  相似文献   

6.
This study examined the impact of recirculation rates (7 and 14 h?1), ventilation rates (1 and 2 h?1), and filtration on secondary organic aerosols (SOAs) generated by ozone of outdoor origin reacting with limonene of indoor origin. Experiments were conducted within a recirculating air handling system that serviced an unoccupied, 236 m3 environmental chamber configured to simulate an office; either no filter, a new filter or a used filter was located downstream of where outdoor air mixed with return air. For otherwise comparable conditions, the SOA number and mass concentrations at a recirculation rate of 14 h?1 were significantly smaller than at a recirculation rate of 7 h?1. This was due primarily to lower ozone concentrations, resulting from increased surface removal, at the higher recirculation rate. Increased ventilation increased outdoor-to-indoor transport of ozone, but this was more than offset by the increased dilution of SOA derived from ozone-initiated chemistry. The presence of a particle filter (new or used) strikingly lowered SOA number and mass concentrations compared with conditions when no filter was present. Even though the particle filter in this study had only 35% single-pass removal efficiency for 100 nm particles, filtration efficiency was greatly amplified by recirculation. SOA particle levels were reduced to an even greater extent when an activated carbon filter was in the system, due to ozone removal by the carbon filter. These findings improve our understanding of the influence of commonly employed energy saving procedures on occupant exposures to ozone and ozone-derived SOA.  相似文献   

7.
In this paper, we report the results and analysis of a recent field campaign in August 2007 investigating the impacts of emissions from transportation on air quality and community concentrations in Beijing, China. We conducted measurements in three different environments, on-road, roadside and ambient. The carbon monoxide, black carbon and ultrafine particle number emission factors for on-road light-duty vehicles are derived to be 95 g kg?1-fuel, 0.3 g kg?1-fuel and 1.8 × 1015 particles kg?1-fuel, respectively. The emission factors for on-road heavy-duty vehicles are 50 g kg?1-fuel, 1.3 g kg?1-fuel and 1.1 × 1016 particles kg?1-fuel, respectively. The carbon monoxide emission factors from this study agree with those derived from remote sensing and on-board vehicle emission testing systems in China. The on-road black carbon and particle number emission factors for Chinese vehicles are reported for the first time in the literature. Strong traffic impacts can be observed from the concentrations measured in these different environments. Most clear is a reflection of diesel truck traffic activity in black carbon concentrations. The comparison of the particle size distributions measured at the three environments suggests that the traffic is a major source of ultrafine particles. A four-day traffic control experiment conducted by the Beijing Government as a pilot to test the effectiveness of proposed controls was found to be effective in reducing extreme concentrations that occurred at both on-road and ambient environments.  相似文献   

8.
To evaluate the spatial variability of ozone concentrations, two studies were undertaken in the montane environment of Trentino region, northern Italy, in 2007. In the first study, a 225 km2 area was considered. Here, a randomized design was used to evaluate the variability of ozone concentration at 1 and 225 km2 scale. Measurements were carried out by passive samplers between May and June 2007. In a second study, the whole 6207 km2 area of Trentino was considered. The area is covered by five grid cells of the European Monitoring and Evaluation Programme (EMEP). A systematic 15 × 15 km grid was used to allocate 15 passive samplers over the entire province, resulting into 1–4 samplers for each of the 5 EMEP grid cells (2500 km2 each) overlapping the study area. Measurements were carried out between June and September 2007. Accuracy of passive samplers was checked by direct comparison with conventional ozone analysers. Significant differences (P = 0.034) were found in ozone concentration among 1 × 1 km quadrates within the 225 km2 study area, while variability within the 1 × 1 km grid cells (coefficient of variation, CV′ = 0.12) slightly exceed the measurement error (CV′ = 0.08). At larger scales (225, 2500 and 6207 km2), ozone concentration shows much higher variability (CV′ from 0.18 to 0.28, with peak values at 0.40). Reported differences lead to very different AOT40 estimates even within the same EMEP grid cell. These findings suggest that 1 × 1 km resolution seems appropriate for ozone concentration modelling. On the other hand, significant sub-grid variation may exist at the resolution adopted by the EMEP model. Coupled with the likely variability of other important meteorological, soil and vegetation variables, our findings suggest that ozone risk assessment for vegetation based on large-scale modelled AOT40 and flux needs to be considered with great caution. The evidence reported in this paper asks for more detailed national-scale modelling, and the development of methods to incorporate local scale variations into large-scale models.  相似文献   

9.
Interannual, seasonal, daily and altitudinal patterns of tropospheric ozone mixing ratios, as well as ozone phytotoxicity and the relationship with NOx precursors and meteorological variables were monitored in the Central Catalan Pyrenees (Meranges valley and Forest of Guils) over a period of 5 years (2004–2008). Biweekly measurements using Radiello passive samplers were taken along two altitudinal transects comprised of thirteen stations ranging from 1040 to 2300 m a.s.l. Visual symptoms of ozone damage in Bel-W3 tobacco cultivars were evaluated biweekly for the first three years (2004–2006). High ozone mixing ratios, always above forest and vegetation protection AOT40 thresholds, were monitored every year. In the last 14 years, the AOT40 (Apr–Sept.) has increased significantly by 1047 μg m?3 h per year. Annual means of ozone mixing ratios ranged between 38 and 67 ppbv (38 and 74 ppbv during the warm period) at the highest site (2300 m) and increased at a rate of 5.1 ppbv year?1. The ozone mixing ratios were also on average 35–38% greater during the warm period and had a characteristic daily pattern with minimum values in the early morning, a rise during the morning and a decline overnight, that was less marked the higher the altitude. Whereas ozone mixing ratios increased significantly with altitude from 35 ppbv at 1040 m–56 ppbv at 2300 m (on average for 2004–2007 period), NO2 mixing ratios decreased with altitude from 5.5 ppbv at 1040 m–1 ppbv at 2300 m. The analysis of meteorological variables and NOx values suggests that the ozone mainly originated from urban areas and was transported to high-mountain sites, remaining aloft in absence of NO. Ozone damage rates increased with altitude in response to increasing O3 mixing ratios and a possible increase in O3 uptake due to more favorable microclimatic conditions found at higher altitude, which confirms Bel-W3 as a suitable biomonitor for ozone concentrations during summer time. Compared to the valley-bottom site the annual means of ozone mixing ratios are 37% larger in the higher sites. Thus the AOT40 for the forest and vegetation protection threshold is greatly exceeded at higher sites. This could have substantial effects on plant life at high altitudes in the Pyrenees.  相似文献   

10.
The formation of secondary organic aerosol (SOA) produced from linalool ozonolysis was examined using a dynamic chamber system that allowed the simulation of ventilated indoor environments. Experiments were conducted under room temperature (22–23 °C) and air exchange rate of 0.67 h?1. An effort was made to maintain the product of the concentrations of the two reagents constant. The results suggest that under the conditions when the product of the two reagent concentrations was constant, the relative concentrations play an important role in determining the total SOA formed. A combination of concentrations somewhere in ozone limiting region will produce the maximum SOA concentration. The measured reactive oxygen species (ROS) concentrations at linalool and ozone concentrations relevant to prevailing indoor concentrations ranged from 0.71 to 2.53 nmol m?3 equivalents of H2O2. It was found that particle samples aged for 24 h lost a significant fraction of the ROS compared to fresh samples. The residual ROS concentrations were around 15–69%. Compared with other terpene species like α-pinene that has one endocyclic unsaturated carbon bond, linalool was less efficient in potential SOA formation yields.  相似文献   

11.
The Metropolitan Area of Buenos Aires (MABA) is the third mega-city in Latin America. Atmospheric N emitted in the area deposits to coastal waters of de la Plata River. This study describes the parameterizations included in DAUMOD-RD (v.3) model to evaluate concentrations of nitrogen compounds (nitrogen dioxide, gaseous nitric acid and nitrate aerosol) and their total (dry and wet) deposition to a water surface. This model is applied to area sources and CALPUFF model to point sources of NOx in the MABA. The models are run for 3 years of hourly meteorological data, with a spatial resolution of 1 km2. Mean annual deposition is 69, 728 kg-N year?1 over 2 339 km2 of river. Dry deposition contributions of N-NO2, N-HNO3 and N-NO3? to this value are 44%, 22% and 20%, respectively. Wet deposition of N-HNO3 and N-NO3? represents 3% and 11% of total annual value, respectively. This very low contribution results from the rare occurrence of rainy hours with wind blowing from the city to the river. Monthly dry deposition flux estimated for coastal waters of MABA varies between 7 and 13 kg-N km?2 month?1. These results are comparable to values reported for other coastal zones in the world.  相似文献   

12.
The effect of ozone fumigation on the reduction of difenoconazole residue on strawberries was studied. Strawberries were immersed in 1.0 L of aqueous solution containing 400 μL of the commercial product (250 g L?1 of difenoconazole) for 1 min. Then, they were dried and exposed to ozone gas (O3) at concentrations of 0.3, 0.6 and 0.8 mg L?1 for 1 h. The ozone fumigation treatments reduced the difenoconazole residue on strawberries to concentrations below 0.5 mg kg?1, which corresponds to a 95% reduction. The strawberries treated with ozone and the control group, which was not treated with ozone, were stored at 4°C for 10 days. Some characteristics of the fruit were monitored throughout this period. Among these, pH, weight loss and total color difference did not change significantly (P > 0.05). The fumigation with ozone significantly affected the soluble solids, titratable acidity and ascorbic acid content (vitamin C) of the strawberries preventing a sharp reduction of these parameters during storage.  相似文献   

13.
Applying manure compost not only results in zinc accumulation in the soil but also causes an increase in zinc mobility and enhances zinc leaching. In this study, the physical and chemical characteristics of zinc, zinc profiles, and zinc balance were investigated to characterise the fate of zinc in fields where the quality and amount of pig manure compost applied have been known for 13 years. Moreover, we determined zinc fractionation in both 0.1 mol L?1HCl-soluble (mobile) and -insoluble (immobile) fractions. Adsorption of zinc in the soil was enhanced with increasing total carbon content following the application of pig manure compost. The 159.6 mg ha?1 year?1manure applied plot (triplicate) exceeded the Japanese regulatory level after only 6 years of applying pig manure compost, whereas the 53.2 mg ha?1 year?1 manure applied plot (standard) reached the regulatory level after 13 years. The zinc loads in the plots were 17.0 and 5.6 kg ha?1 year?1, respectively. However, 5.9 % and 17.2 % of the zinc loaded in the standard and the triplicate pig manure compost applied plots, respectively, were estimated to be lost from the plough layer. Based on the vertical distribution of mobile and immobile zinc content, a higher rate of applied manure compost caused an increase in the mobile zinc fraction to a depth of 40 cm. Although the adsorption capacity of zinc was enhanced following the application of pig manure compost, a greater amount of mobile zinc could move downward through the manure amended soil than through non manure-amended soil.  相似文献   

14.
Ambient aerosols adversely affect human health and visibility and impact climate. Identification of sources of particulate matter and its precursors is necessary for developing control strategies. The goal of this research is to utilize long-term speciated particulate matter data and back-trajectory cluster analyses to determine trends and sources of particulate matter in the Superstition Wilderness, a rural area east of Phoenix, Arizona. Twenty-four hour back-trajectories were calculated for every hour of every 24-h particulate matter sample obtained by IMPROVE from 1991 to 2004. Days that included back-trajectories with considerable spatial variance were excluded from further analyses. To minimize uncertainties inherent in single trajectories, all calculated trajectories for each sampling day were averaged to represent the air mass sampled during that day. Cluster analysis of trajectories identified four unique regions, including a region with Phoenix, a region with copper smelters, and one with coal-fired power plants. Yearly averages of sulfate, nitrate, soil, and carbon concentrations were calculated for each region. Statistically significant trends in species concentrations by region and independent of region and differences in concentrations between regions were examined.Sulfate concentrations from the region with smelters were higher than other regions but decreased during the study period. Emissions data from the smelters indicate that much of the sulfate from the region was due to the smelters. The overall 2.2% year−1 decrease in sulfate concentrations at TNM is likely due to decreased emissions from the copper smelters. A 3.6% year−1 increase in nitrate concentrations was driven largely by increasing NOx concentrations from Phoenix and to a lesser extent the region southwest of the site which includes Tucson and suburban/urban areas between Phoenix and Tucson. Soil concentrations were higher from regions with deserts than the region without desert. This method could not identify trends or source regions of carbonaceous aerosols at this site.  相似文献   

15.

The dynamics of total phosphorus (TP) in 18 strategic reservoirs of the high-density reservoir network of the Brazilian semiarid was evaluated during the wet and dry periods for the past 12 years. Seasonal overlying concentrations presented no significant differences for about 90% of the reservoirs (p>0.05). This was attributed to a trade-off between the hydrological/limnological processes occurring in the two seasons. Then, a transient complete-mix mass balance model was applied with particular adaptations for the tropical semiarid reservoirs to estimate the TP load for each season. Because of the relatively well-mixed conditions and high hypolimnetic dissolved oxygen concentrations during the wet season, the wet load was assumed to represent the external TP load. On the other hand, because of the absence of reservoir inflow during the dry season, phosphorus release under anoxic sediment conditions and wind-induced resuspension under shallow water depths, the dry load was assumed to reflect the internal TP load. The maximum external loads were related to peak inflows, notably after drought periods. Consistently, the largest internal loads were obtained during the drought periods, when the reservoirs were shallower and more prone to phosphorus release and resuspension. By comparing the impact of the two input load types, the wet period load was predominant in 72% of the reservoirs. The areal phosphorus loads ranged from 0.66 to 7.29 gP m2 year?1, which were consistent with the literature, despite the very high density of reservoirs. Finally, power-law curves including data for all studied reservoirs were adjusted between the dry period load and volume, dry and wet period loads, wet period load and inflow, and total load and catchment area, resulting in satisfactory R2 (0.84–0.98).

  相似文献   

16.
This paper presents the results of wet precipitation chemistry from September 2009 to August 2010 at a high-altitude forest site in the southeastern Tibetan Plateau (TP). The alkaline wet precipitation, with pH ranging from 6.25 to 9.27, was attributed to the neutralization of dust in the atmosphere. Wet deposition levels of major ions and trace elements were generally comparable with other alpine and remote sites around the world. However, the apparently greater contents/fluxes of trace elements (V, Co, Ni, Cu, Zn, and Cd), compared to those in central and southern TP and pristine sites of the world, reflected potential anthropogenic disturbances. The almost equal mole concentrations and perfect linear relationships of Na+ and Cl? suggested significant sea-salts sources, and was confirmed by calculating diverse sources. Crust mineral dust was responsible for a minor fraction of the chemical components (less than 15 %) except Al and Fe, while most species (without Na+, Cl?, Mg2+, Al, and Fe) arose mainly from anthropogenic activities. High values of as-K+ (anthropogenic sources potassium), as-SO4 2?, and as-NO3 ? observed in winter and spring demonstrated the great effects of biomass burning and fossil fuel combustion in these seasons, which coincided with haze layer outburst in South Asia. Atmospheric circulation exerted significant influences on the chemical components in wet deposition. Marine air masses mainly originating from the Bay of Bengal provided a large number of sea salts to the chemical composition, while trace elements during summer monsoon seasons were greatly affected by industrial emissions from South Asia. The flux of wet deposition was 1.12 kg?N?ha?1?year?1 for NH4 +–N and 0.29 kg?N?ha?1?year?1 for NO3 ?–N. The total atmospheric deposition of N was estimated to be 6.41 kg?N?ha?1?year?1, implying potential impacts on the alpine ecosystem in this region.  相似文献   

17.
Particulate matter, including coarse particles (PM2.5–10, aerodynamic diameter of particle between 2.5 and 10 μm) and fine particles (PM2.5, aerodynamic diameter of particle lower than 2.5 μm) and their compositions, including elemental carbon, organic carbon, and 11 water-soluble ionic species, and elements, were measured in a tunnel study. A comparison of the six-hour average of light-duty vehicle (LDV) flow of the two sampling periods showed that the peak hours over the weekend were higher than those on weekdays. However, the flow of heavy-duty vehicles (HDVs) on the weekdays was significant higher than that during the weekend in this study. EC and OC content were 49% for PM2.5–10 and 47% for PM2.5 in the tunnel center. EC content was higher than OC content in PM2.5–10, but EC was about 2.3 times OC for PM2.5. Sulfate, nitrate, ammonium were the main species for PM2.5–10 and PM2.5. The element contents of Na, Al, Ca, Fe and K were over 0.8 μg m?3 in PM2.5–10 and PM2.5. In addition, the concentrations of S, Ba, Pb, and Zn were higher than 0.1 μg m?3 for PM2.5–10 and PM2.5. The emission factors of PM2.5–10 and PM2.5 were 18 ± 6.5 and 39 ± 11 mg km?1-vehicle, respectively. The emission factors of EC/OC were 3.6/2.7 mg km?1-vehicle for PM2.5–10 and 15/4.7 mg km?1-vehicle for PM2.5 Furthermore, the emission factors of water-soluble ions were 0.028(Mg2+)–0.81(SO42?) and 0.027(NO2?)–0.97(SO42?) mg km?1-vehicle for PM2.5–10 and PM2.5, respectively. Elemental emission factors were 0.003(V)–1.6(Fe) and 0.001(Cd)–1.05(Na) mg km?1-vehicle for PM2.5–10 and PM2.5, respectively.  相似文献   

18.
High-volume PM2.5 samples were collected at Summit, Greenland for approximately six months from late May through December of 2006. Filters were composited and analyzed for source tracer compounds. The individual organic compounds measured at Summit are orders of magnitude smaller than concentrations measured at other sites, including locations representative of remote oceanic, and remote and urban continental aerosol. The measured tracers were used to quantify the contribution of biomass burning (0.6–0.9 ng C m?3), vegetative detritus (0.3–0.9 ng C m?3), and fossil fuel combustion (0.1–0.8 ng C m?3) sources, 4% of OC total, to atmospheric organic carbon concentrations at the remote location of Summit, Greenland. The unapportioned organic carbon (96%) during the early summer period correlates well with the fraction of water soluble organic carbon, indicating secondary organic aerosol as a large source of organic carbon, supported by the active photochemistry occurring at Summit. To the author's knowledge, this paper represents the first source apportionment results for the polar free troposphere.  相似文献   

19.
Hourly measurements of baseline ozone at the Mace Head Atmospheric Research Station on the Atlantic Ocean coast of Ireland are observed when unpolluted air masses are advected to the station from across the North Atlantic Ocean. Monthly mean ozone mixing ratios in baseline air masses have risen steadily during the 1980s and 1990s reaching unprecedented levels during the early months of 1999. During the 2000s, baseline ozone mixing ratios have shown evidence of decline and stabilisation. Over the entire 20-year 1987–2007 period, the trend in annual baseline ozone has been +0.31±0.12(2−σ) ppb year−1 and is highly statistically significant. Trends have been highest in the spring months and lowest in the summer months, producing a significant increase in the amplitude of the seasonal cycle. Over the shorter 1995–2007 period, we demonstrate how the growth to peak in 1999 and the subsequent decline have been driven by boreal biomass burning events during 1998/1999 and 2002/2003. The 2000s have been characterised by relatively constant baseline ozone and CH4 levels and these may be a reasonable guide to future prospects, at least in the short term.  相似文献   

20.
To improve understanding of phosphorus (P) retention processes in small constructed wetlands (CWs), we analysed variations in sediment deposition and accumulation in four CWs on clay soils in east-central Sweden. Sediment deposition (in traps) generally exceeded the total suspended solids (TSS) load suggesting that resuspension and wetland base erosion were important. This was confirmed by quantification of particle accumulation (on plates) (1–23 kg m?2 year?1), which amounted to only 13–23% of trap deposition. Spatial mean P concentrations in accumulated sediment on plates (0.09–0.15%) were generally similar to temporal mean P concentrations of particles in water (0.11–0.15%). Deposition/accumulation was minor in one wetland with high hydraulic load (400 m year?1), suggesting that such small wetlands are not efficient as particle sinks. Economic support for CWs are given, but design and landscape position are here demonstrated to be important for effective P retention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号