首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
污染土壤淋洗技术是修复污染土壤的一种新方法 ,是对污染土壤生物修复的一种补充 ,使污染土壤修复的系统化成为可能。淋洗法主要使用淋洗剂清洗土壤 ,使土壤中污染物随淋洗剂流出 ,然后对淋洗剂及土壤进行后续处理 ,从而达到修复污染土壤的目的。因为淋洗剂的种类和淋洗方式的不同 ,土壤淋洗法可分为许多种类。土壤淋洗法主要受土壤条件、污染物类型、淋洗剂的种类和运行方式等因素影响。综合考虑多方面因素 ,就有潜力设计出经济高效的土壤淋洗系统。土壤淋洗法有很多优点 ,尽管也存在一些问题 ,但其技术上的优势也是其他方法难以取代的 ,所以有良好的应用前景。  相似文献   

2.
The occurrence of Dense Non-Aqueous Phase Liquid (DNAPL) contaminations in the subsurface is a threat for drinkwater resources in the western world. Surfactant-Enhanced Aquifer Remediation (SEAR) is widely considered as one of the most promising techniques to remediate DNAPL contaminations in-situ, be it with considerable additional costs compared to classical pump-and-treat remediations. A cost-effective design of the remediation set-up is therefore essential. In this work, a pilot SEAR test is executed at a DNAPL contaminated site in Belgium in order to collect data for the calibration of a multi-phase multi-component model. The calibrated model is used to assess a series of scenario-analyses for the full-scale remediation of the site. The remediation variables that were varied were the injection and extraction rate, the injection and extraction duration, and the surfactant injection concentrations. A constrained multi-objective optimization of the model was applied to obtain a Pareto set of optimal remediation strategies with different weights for the two objectives of the remediation: (i) the maximal removal of DNAPL and (ii) a total minimal cost. These Pareto curves can help decision makers to select an optimal remediation strategy in terms of cost and remediation efficiency. The Pareto front shows a considerable trade-off between the total remediation cost and the removed DNAPL mass.  相似文献   

3.
The long-term impact of source-zone remediation efforts was assessed for a large site contaminated by trichloroethene. The impact of the remediation efforts (soil vapor extraction and in-situ chemical oxidation) was assessed through analysis of plume-scale contaminant mass discharge, which was measured using a high-resolution data set obtained from 23 years of operation of a large pump-and-treat system. The initial contaminant mass discharge peaked at approximately 7kg/d, and then declined to approximately 2kg/d. This latter value was sustained for several years prior to the initiation of source-zone remediation efforts. The contaminant mass discharge in 2010, measured several years after completion of the two source-zone remediation actions, was approximately 0.2kg/d, which is ten times lower than the value prior to source-zone remediation. The time-continuous contaminant mass discharge data can be used to evaluate the impact of the source-zone remediation efforts on reducing the time required to operate the pump-and-treat system, and to estimate the cost savings associated with the decreased operational period. While significant reductions have been achieved, it is evident that the remediation efforts have not completely eliminated contaminant mass discharge and associated risk. Remaining contaminant mass contributing to the current mass discharge is hypothesized to comprise poorly accessible mass in the source zones, as well as aqueous (and sorbed) mass present in the extensive lower-permeability units located within and adjacent to the contaminant plume. The fate of these sources is an issue of critical import to the remediation of chlorinated-solvent contaminated sites, and development of methods to address these sources will be required to achieve successful long-term management of such sites and to ultimately transition them to closure.  相似文献   

4.
污染土壤修复的技术再造与展望   总被引:16,自引:0,他引:16  
污染土壤的面积在迅速扩大,迫切需要修复、治理;随着土壤污染组分的日益复杂化,等待着全面、高效的修复技术的研制。对污染土壤修复相关技术现状进行剖析表明,现有的各种污染土壤修复技术由于存在着许多技术上难以克服的问题,需要从技术的现有进展和技术构想进行整体意义上的创新,即如何把现有的技术进行参数优化、改造后进行最佳组合与综合,才能取得该技术领域的重大突破。污染土壤的生态化学修复,其实质在于技术的再造,代表了21世纪污染土壤修复技术的发展方向。  相似文献   

5.
随着城市结构调整,工业企业易地搬迁后遗留下大量污染场地,严重威胁人居环境,亟待开展土壤修复.土壤淋洗技术具有工艺简单、处理范围广、修复效率高和治理费用相对低廉等优点,是目前修复重金属污染土壤最有效的技术之一,同时对于有机物污染土壤也具有显著修复效果.经过大量资料、文献调研,系统梳理土壤淋洗技术在国内的研究现状,结合实际...  相似文献   

6.
BACKGROUND, AIM AND SCOPE: Once they have been generated, polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and other persistent organic pollutants (POPs) can persist in soils and sediments and in waste repositories for periods extending from decades to centuries. In 1994, the US EPA concluded that contaminated sites and other reservoirs are likely to become the major source of contemporary pollution problems with these substances. With this in mind, this article is the first in a new series in ESPR under the title 'Case Studies on Dioxin and POP Contaminated Sites--Contemporary and Future Relevance and Challenges', which will address this important issue. The series will document various experiences from sites contaminated with PCDD/F and other POPs. This article provides an overview of the content of the articles comprising the series. In addition, it provides a review of the subject in its own right and identifies the key issues arising from dioxin/POP-contaminated sites. Additionally, it highlights the important conclusions that can be drawn from these examples. The key aim of this article and of the series as a whole is to provide a comprehensive overview of the types of PCDD/F contaminated sites that exist as a result of historical activities. It details the various processes whereby these sites became contaminated and attempts to evaluate their contemporary relevance as sources of PCDD/Fs and other POPs. It also details the various strategies used to assess these historical legacies of contamination and the concepts developed, or which are under development, to effect their remediation. MAIN FEATURES: Special sessions on 'Contaminated sites--Cases, remediation, risk and policy' were held at the DIOXIN conferences in 2006 and 2007, and this theme will be continued at DIOXIN 2008 to be held in Birmingham. Selected cases from the approximately 70 contributions made to these sessions, together with some additional invited case studies are outlined together with the key issues they raise. By evaluating these cases and adding details of experiences published in the current literature, an overview will be given of the different features and challenges of dioxin and POP-contaminated sites. RESULTS: This article provides a systematic categorisation of types of PCDD/F and POP-contaminated sites. These are categorised according to the chemical or manufacturing process, which generated the PCDD/Fs or POPs and also includes the use and disposal aspects of the product life cycle in question. The highest historical PCDD/F and dioxin-like polychlorinated biphenyl (PCB) contamination burdens have arisen as a result of the production of chlorine and of chlorinated organic chemicals. In particular, the production of chlorinated pesticides, PCBs and the related contaminated waste streams are identified being responsible for historical releases of toxic equivalents (TEQs) at a scale of many tonnes. Along with such releases, major PCDD/F contaminated sites have been created through the application or improper disposal of contaminated pesticides, PCBs and other organochlorine chemicals, as well through the recycling of wastes and their attempted destruction. In some extreme examples, PCDD/F contaminated sites have also resulted from thermal processes such as waste incinerators, secondary metal industries or from the recycling or deposition of specific waste (e.g. electronic waste or car shredder wastes), which often contain chlorinated or brominated organic chemicals. The examples of PCDD/F and dioxin-like PCB contamination of fish in European rivers or the impact of contaminated sites upon fishing grounds and upon other food resources demonstrate the relevance of these historical problems to current and future human generations. Many of the recent food contamination problems that have emerged in Europe and elsewhere demonstrate how PCDD/F and dioxin like PCBs from historical sources can directly contaminate human and animal feedstuffs and indeed highlight their considerable contemporary relevance in this respect. Accordingly, some key experiences and lessons learnt regarding the production, use, disposal and remediation of POPs from the contaminated sites are summarised. DISCUSSION: An important criterion for evaluating the significance and risks of PCDD/Fs and other POPs at contaminated sites is their present or future potential for mobility. This, in turn, determines to a large degree their propensity for off-site transport and environmental accessibility. The detailed evaluation of contaminated site cases reveals different site-specific factors, which influence the varied pathways through which poor water-soluble POPs can be mobilised. Co-contaminants with greater water solubility are also typically present at such sites. Hence, pumping of groundwater (pump and treat) is often required in addition to attempting to physically secure a site. At an increasing number of contaminated sites, securing measures are failing after relatively short time spans compared to the time horizon, which applies to persistent organic pollutant contamination. Due to the immense costs and challenges associated with remediation of contaminated sites 'monitored natural attenuation' is increasingly gaining purchase as a conceptual remediation approach. However, these concepts may well prove limited in their practical application to contaminated sites containing persistent organic pollutants and other key pollutants like heavy metals. CONCLUSIONS: It is inevitable, therefore, that dioxin/POP-contaminated sites will remain of contemporary and future relevance. They will continue to represent an environmental issue for future generations to address. The securing and/or remediation of dioxin/POP-contaminated sites is very costly, generally in the order of tens or hundreds of millions of dollars. Secured landfills and secured production sites need to be considered as constructions not made for 'eternity' but built for a finite time scale. Accordingly, they will need to be controlled, supervised and potentially repaired/renewed. Furthermore, the leachates and groundwater impacted by these sites will require ongoing monitoring and potential further remediation. These activities result in high maintenance costs, which are accrued for decades or centuries and should, therefore, be compared to the fully sustainable option of complete remediation. The contaminated site case studies highlight that, while extensive policies and established funds for remediation exist in most of the industrialised western countries, even these relatively well-regulated and wealthy countries face significant challenges in the implementation of a remediation strategy. This highlights the fact that ultimately only the prevention of contaminated sites represents a sustainable solution for the future and that the Polluter Pays Principle needs to be applied in a comprehensive way to current problems and those which may emerge in the future. RECOMMENDATIONS AND PERSPECTIVES: With the continuing shift of industrial activities in developing and transition economies, which often have poor regulation (and weak self-regulation of industries), additional global challenges regarding POPs and other contaminated sites may be expected. In this respect, a comprehensive application of the "polluter pays principle" in these countries will also be a key to facilitate the clean-up of contaminated areas and the prevention of future contaminated sites. The threats and challenges of contaminated sites and the high costs of securing/remediating the problems highlight the need for a comprehensive approach based upon integrated pollution prevention and control. If applied to all polluting (and potentially polluting) industrial sectors around the globe, such an approach will prove to be both the cheapest and most sustainable way to underpin the development of industries in developing and transition economies.  相似文献   

7.
The big flood in the upper Elbe River catchment area has revealed a wide spectrum of problems with contaminated sediments. So far, an effective strategy for managing contaminated sediments on a river basin scale is still missing and it seems that not much has been learned from the lessons received during the last decade. In the following overview, special emphasis is given to the utilization of geochemically-based techniques for sediment remediation, which can be applied in different parts of a river basin. The examples presented here are mostly from the Elbe River catchment area. In general, new technical problem solutions need a set of practical process knowledge that uses a wide range of simulation techniques, as well as models in different spatial and temporal scales. The evaluation of recent flood events clearly demonstrates the importance of chemical expertise in the decision-making process for the sustainable development in river basins.  相似文献   

8.
A two-stage methanotrophic bioreactor system was developed for remediation of water contaminated with TCE and other chlorinated, volatile, aliphatic hydrocarbons. The first stage of the reactor was a suspended-growth culture vessel using a bubbleless methane-transfer device. The second stage was a plug-flow bioreactor supplied with contaminated groundwater and cell suspension from the culture vessel. The test objectives were to determine the applicability of microbial culture conditions reported in the literature for continuous, pilot-scale TCE treatment; the technical feasibility of plug-flow bioreactor design for treatment of TCE; and the projected economic competitiveness of the technology considering the cost of methane for growth of methanotrophs. The methanotrophic organism used in the study was Methylosinus trichosporium OB3b. Information on system operation was obtained in bench tests prior to conducting the pilot tests. In bench- and pilot-scale tests, variability in the degree of TCE degradation and difficulty in maintaining the microbial culture activity led to short periods of satisfactory biotreatment. Further development of the microbial culture system will be required for long-term operation. During transient periods of high TCE degradation activity, the bioreactor concept proved feasible by exhibiting both a high degree of TCE biodegradation (typically about 90% at influent TCE concentrations of 0.5-4 ppm) and a close approximation to first-order reactor kinetics throughout the length of the reactor. Actual methane usage in the pilot-scale reactor resulted in projected methane costs of $0.33 per 1000 gallons of water treated. This cost theoretically would be reduced by system modifications. The theoretical minimum methane cost was approximately $0.05 per 1000 gallons.  相似文献   

9.
Laboratory column flushing experiments were conducted to remove phenanthrene from contaminated soils by Triton X-100 (TX100) with an aim to investigating the effect of surfactant sorption on the performance of surfactant-enhanced remediation process. The effluent concentration of phenanthrene from soil columns showed strong dependence on the sorption breakthrough curves of TX100. The removal of phenanthrene from contaminated soils was enhanced only when the sorption breakthrough of TX100 occurred and the influent concentration of TX100 was greater than the critical enhanced flushing concentration (CEFC). The sorption of surfactant onto soils and the subsequent partitioning of contaminants into soil-sorbed surfactant had a significant effect on the solute equilibrium distribution coefficient (KD) and thus the flushing efficiency for phenanthrene. A model was developed to predict KD and CEFC values for simulating the performance of surfactant-enhanced flushing for contaminated soils. These results are of practical interest in developing effective and safe surfactant-enhanced remediation technologies.  相似文献   

10.
Bioremediation, the process by which hazardous substances are degraded by microorganisms, is at the forefront of a larger group of innovative remediation technologies being applied at hazardous waste sites worldwide. Although the process of bioremediation has been utilized for decades in the field of wastewater engineering, its application to soils and groundwater at hazardous waste sites is fairly new and still undergoing intensive development. This article is intended to provide both an overview of the state of practice of bioremediation in hazardous waste remediation operations, and an inventory of issues to consider when evaluating the use of this technology for a contaminated site. These topics will be the subject matter of a unique Bioremediation Satellite seminar to be broadcast on January 9, 1992. The seminar, a joint venture between the Air and Waste Management Association (A&WMA) and the Hazardous Waste Action Coalition (HWAC), is the first in a series of satellite seminars that will deal with innovative hazardous waste remediation technologies. The intent of these seminars is to design programs which will make hazardous waste practitioners more familiar with innovative remediation technologies so that they will consider using the technologies in future clean-up operations.  相似文献   

11.
Soil pollution with toxic elements is a recurrent issue due to environmental disasters, fossil fuel burning, urbanization, and industrialization, which have contributed to soil contamination over the years. Therefore, the remediation of toxic metals in soil is always an important topic since contaminated soil can affect the environment, agricultural safety, and human health. Many remediation methods have been developed; however, it is essential to ensure that they are safe, and also take into account the limitation of each methodology (including high energy input and generation of residues). This scenario has motivated this review, where we explore soil contamination with arsenic, lead, mercury, and chromium and summarize information about the methods employed to remediate each of these toxic elements such as phytoremediation, soil washing, electrokinetic remediation, and nanoparticles besides elucidating some mechanisms involved in the remediation. Considering all the discussed techniques, nowadays, different techniques can be combined together in order to improve the efficiency of remediation besides the new approach of the techniques and the use of one technique for remediating more than one contaminant.  相似文献   

12.
Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.  相似文献   

13.
Abstract

Many processes have been investigated to dispose of obsolete pesticide stocks and clean up wastewater and contaminated soil. The processes vary in their stages of development and commercial utility. With the exception of incineration, no single process may be amenable to all pesticide waste. Thus, any chosen process must consider first the chemical constituents needing remediation, their concentration, and desired or regulated cleanup objectives. Incineration seems too impractical and expensive to clean up routinely generated wastewater and contaminated soil, but it may currently be the only practical option for obsolete stocks . Practical remediation processes for wastewater and contaminated soil produced by small waste generators are discussed. Cleanup should be viewed as an integration of physical, chemical, and biological technologies.  相似文献   

14.
Due to the inherent complexity, uncertainty, and posterity in operating a biological wastewater treatment process, it is difficult to control nitrogen removal in the biological wastewater treatment process. In order to cope with this problem and perform a cost-effective operation, an integrated neural-fuzzy control system including a fuzzy neural network (FNN) predicted model for forecasting the nitrate concentration of the last anoxic zone and a FNN controller were developed to control the nitrate recirculation flow and realize nitrogen removal in an anoxic/oxic (A/O) process. In order to improve the network performance, a self-learning ability embedded in the FNN model was emphasized for improving the rule extraction performance. The results indicate that reasonable forecasting and control performances had been achieved through the developed control system. The effluent COD, TN, and the operation cost were reduced by about 14, 10.5, and 17 %, respectively.  相似文献   

15.
Bioremediation, the process by which hazardous substances are degraded by microorganisms, is at the forefront of a larger group of innovative remediation technologies being applied at hazardous waste sites worldwide. Although the process of bioremediation has been utilized for decades in the field of wastewater engineering, its application to soils and groundwater at hazardous waste sites is fairly new and still undergoing intensive development.

This article is intended to provide both an overview of the state of practice of bioremediation in hazardous waste remediation operations, and an inventory of issues to consider when evaluating the use of this technology for a contaminated site.

These topics will be the subject matter of a unique Bioremediation Satellite seminar to be broadcast on January 9, 1992. The seminar, a joint venture between the Air and Waste Management Association (A&WMA) and the Hazardous Waste Action Coalition (HWAC), is the first in a series of satellite seminars that will deal with innovative hazardous waste remediation technologies. The intent of these seminars is to design programs which will make hazardous waste practitioners more familiar with innovative remediation technologies so that they will consider using the technologies in future clean-up operations.  相似文献   

16.
石油污染土壤的植物与微生物修复技术   总被引:23,自引:3,他引:20  
石油污染土壤的生物修复技术具有成本低、简便高效、对环境影响小等优点,正逐步成为石油污染治理研究的热点领域,具有广阔的发展前景.介绍了我国的石油污染概况及生物修复技术在石油污染治理中的应用,重点对石油污染土壤的微生物修复、植物修复、植物一微生物联合修复技术的研究进展及各自的优点、局限性进行了综述,并提出了石油污染土壤生物修复技术研究的重点领域.  相似文献   

17.
The dispersal of industrial and municipal wastes leads to an increase of contaminated soils and is one of the large concerns in many countries throughout Europe regarding environmental issues. This article proposes a sequence of the microbially aided phytoremediation (phytoextraction and phytostabilization) procedure with the following most important steps: (1) risk assessment, (2) site investigation, (3) determination of the remediation strategy, (4) realization of remediation measures, (5) monitoring, and (6) reuse of the remediated site. UMBRELLA's innovative approach is a proposal of methods to evolve a tool-box which supports phytoremediation by means of microbes and enhances the efficiency of the remediation process at low and heterogeneously metal contaminated sites.  相似文献   

18.
Former manufactured gas plant sites often form a widespread contaminant source in the subsurface, leading to large plumes that contain a wide variety of tar-oil related compounds. Although most of these compounds eventually degrade naturally, the relevant processes tend to be slow and inefficient, often leaving active remediation as the only viable option to eliminate the risks of toxic substances to reach potential receptors such as surface waters or drinking water wells. In this study we use a reactive transport model to analyse the fate of a contaminant plume containing acenaphthene, methylbenzofurans and dimethylbenzofurans (i) prior to the installation of an active remediation scheme and (ii) for an enhanced remediation experiment during which O(2) and H(2)O(2) were added to the contaminated groundwater through a recirculation well. The numerical model developed for this study considers the primary contaminant degradation reactions (i.e., microbially mediated redox reactions) as well as secondary and competing mineral precipitation/dissolution reactions that affect the site's hydrochemistry and/or contaminant fate. The model was calibrated using a variety of constraints to test the uncertainty on model predictions resulting from the undocumented presence of reductants such as pyrite. The results highlight the important role of reactive transport modelling for the development of a comprehensive process understanding.  相似文献   

19.
A computational model is applied to the optimization of pulsed pumping systems for efficient in situ remediation of groundwater contaminants. In the pulsed pumping mode of operation, periodic rather than continuous pumping is used. During the pump-off or trapping phase, natural gradient flow transports contaminated groundwater into a treatment zone surrounding a line of injection and extraction wells that transect the contaminant plume. Prior to breakthrough of the contaminated water from the treatment zone, the wells are activated and the pump-on or treatment phase ensues, wherein extracted water is augmented to stimulate pollutant degradation and recirculated for a sufficient period of time to achieve mandated levels of contaminant removal. An important design consideration in pulsed pumping groundwater remediation systems is the pumping schedule adopted to best minimize operational costs for the well grid while still satisfying treatment requirements. Using an analytic two-dimensional potential flow model, optimal pumping frequencies and pumping event durations have been investigated for a set of model aquifer-well systems with different well spacings and well-line lengths, and varying aquifer physical properties. The results for homogeneous systems with greater than five wells and moderate to high pumping rates are reduced to a single, dimensionless correlation. Results for heterogeneous systems are presented graphically in terms of dimensionless parameters to serve as an efficient tool for initial design and selection of the pumping regimen best suited for pulsed pumping operation for a particular well configuration and extraction rate. In the absence of significant retardation or degradation during the pump-off phase, average pumping rates for pulsed operation were found to be greater than the continuous pumping rate required to prevent contaminant breakthrough.  相似文献   

20.
Gong Z  Alef K  Wilke BM  Li P 《Chemosphere》2005,58(3):291-298
This study reports on the feasibility of remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soils using sunflower oil, an environmentally-friendly solvent. Batch experiments were performed to test the influence of oil/soil ratio on the remediation of PAH contaminated soil, and to test the mass transfer behaviors of PAHs from soil to oil. An empirical model was employed to describe the kinetics of PAH dissolution and to predict equilibrium concentrations of PAHs in oil. PAH containing oil was regenerated using active carbon. Results show that dissolution of PAHs from a Manufactured Gas Plant (MGP) soil at oil/soil ratios of one or two were almost the same. Nearly all PAHs (81-100%) could be removed by sunflower oil dissolution. Mass transfer coefficients for low molecular PAHs namely fluoranthene, phenanthrene and anthracene were one or two orders of magnitude higher than those for high molecular PAHs with 4-6 rings. Ninety milliliters of PAH containing oil could be regenerated by 10 g active carbon in a batch reactor. Such a remediation procedure indicates that sunflower oil is a promising agent for the removal of PAHs from MGP soils. However, further research is required before the method can be used for in situ remediation of contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号