首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 812 毫秒
1.
森林更新是维持和扩大森林资源的主要途径,也是森林结构调整、森林可持续经营和构建多功能高效的森林生态系统的过程。在安徽南部的岭南林场,选择了马尾松(Pinus massoniana Lamb)人工林(MP)、杉木(Cunninghamia lanceolata)人工林(CF)、阔叶混交天然次生林(MB)和针阔混交人工次生林(MN)等4种具有典型代表性的森林群落类型,研究了不同更新方式形成的森林群落的碳储量结构特征。结果表明:(1)针阔混交次生林树干生物量密度最大,为(67.32±56.57)mg.hm-2,杉木人工林生物量密度最小,为(43.79±9.13)mg.hm-2,而马尾松树干生物量所占比例最大,为(64.04±1.49)%。阔叶混交次生林碳储量最高,为(126.47±90.75)mg.hm-2;(2)4种群落类型中,阔叶混交林与马尾松群落碳密度最大,分别为95.67和98.21mg.hm-2,杉木群落碳密度最小,为55.41 mg.hm-2。阔叶混交林中的灌木层生物量碳密度最大,为(17.438±24.627)mg hm-2,马尾松林的草本层和枯落层生物量碳密度最高,分别为(1.326±0.431)、(5.517±2.846)mg.hm-2;(3)阔叶混交林群落的地下碳储量最高,为(10.5±9.8)mg.hm-2,群落地下碳储量从大到小的顺序是阔叶混交林〉针阔混交林〉杉木林〉马尾松林。相应的群落地上碳储量从大到小的顺序是阔叶混交林〉针阔混交林〉马尾松林〉杉木林。杉木林根茎比(R/S)最大,为0.21±0.01,杉木林群落中的灌木层根茎比(R/S)最大,为1.61±0.11;(4)在阔叶混交林中,株数密度与乔木层、草本层的碳比例正相关。在杉木林群落中,平均胸径、株数密度与乔木层碳所占比例成负相关。除杉木林群落外,灌木层碳含量之比与胸径及密度等调查因子都呈负相关。  相似文献   

2.
基于内蒙古赛罕乌拉森林生态系统定位研究站山杨(Populus davidiana Dode)天然次生林幼龄林、中龄林、近熟林、成熟林及过熟林生物量调查,探讨了不同龄组山杨天然次生林单株木、林分、林下植被和枯落物的生物量及群落碳储量的时空变化规律。结果表明:随林龄的增大,山杨天然次生林木和各器官生物量总体呈增加趋势,树干所占比例增加,中龄林增加尤为明显;林下植被层、枯落物层生物量随林龄增大呈增加趋势。群落总碳储量的空间分布序列是:乔木层〉枯落物层〉林下植被层。幼龄林、中龄林、近熟林、成熟林和过熟林群落的碳储量分别为27.146 6、53.545 1、60.889 8、77.915 8、79.135 3t.hm-2,乔木层碳储量分别为22.206 5、47.215 7、52.056 3、68.445 3、68.773 1 t.hm-2,枯落物层和林下植被层碳储量平均值分别为5.814 4、2.172 7 t.hm-2。乔木层、枯落物层和林下植被层碳储量占总量的平均率分别为86.05%、10.39%和3.57%。研究认为山杨天然次生林群落碳储量随林龄增加的变化规律明显,碳汇潜力巨大;中龄林为碳储量增长迅速期,且持续较长一段时间,是林分管理的关键阶段;自然稀疏有利于促进林木生长,林分碳储量并未随林分密度下降而减小。  相似文献   

3.
为促进沿海合理营林和碳库平衡,基于对福州市滨海后沿沙地上营造的人工林的调查,研究尾巨桉、木麻黄、纹荚相思3种人工林生态系统的碳含量、碳储量及分配格局.结果表明,尾巨桉、木麻黄、纹荚相思不同器官平均碳含量分别为456.08-482.68、431.89-464.90、472.93-505.10 g/kg.相同树种不同器官之间和相同器官不同树种之间的碳含量均存在显著差异(P〈0.05).不同林分间乔木层的碳储量表现为木麻黄(32.89 t/hm^2)〉纹荚相思(31.33 t/hm^2)〉尾巨桉(30.20 t/hm^2),其中,乔木层各器官碳储量均以树干(10.92 t/hm^2、10.36 t/hm^2、15.00 t/hm^2)最大,分别占各自乔木层碳储量的33.20%、33.06%、49.67%;地被层(包括林下植被层和凋落物层)的碳储量表现为尾巨桉(6.42 t/hm^2)〉纹荚相思(6.19 t/hm^2)〉木麻黄(4.57 t/hm^2),其中凋落物层碳储量均远远大于草本层碳储量;土壤层的碳储量表现为木麻黄(8.02 t/hm^2)〉纹荚相思(7.31 t/hm^2)〉尾巨桉(6.42 t/hm^2).这3种人工林生态系统总碳储量表现为木麻黄(45.48 t/hm^2)〉纹荚相思(44.83 t/hm^2)〉尾巨桉(43.04 t/hm^2),且碳储量分布格局均为乔木层〉土壤层〉凋落物层〉草本层.因此,滨海沙地这3种人工林生态系统固碳效益无显著差异,纹荚相思、尾巨桉和木麻黄都是很好的固碳树种.  相似文献   

4.
西双版纳森林植被碳储量动态与增汇潜力研究   总被引:1,自引:0,他引:1  
科学评估区域森林碳储量动态与增汇潜力对理解陆地碳循环具有重要的意义。本文基于生物量转换因子连续函数法,对西双版纳1993—2006年间森林植被碳储量与碳汇潜力进行了研究,结果表明,(1)西双版纳1993—1994年间森林植被整体碳储量为60 770 378.37 t,碳汇增量表现为栎类(Quercus L.)〉经济林〉思茅松(Pinus kesiya)〉其它阔叶〉桤木(Alnus cremastogyne),主要森林类型的碳密度范围为15.08~74.76 t.hm-2;2005—2006年间森林植被整体碳储量为62 347 715.19 t,比1994—1993年间上升2.60%,碳汇增量均表现为其它阔叶〉经济林〉栎类〉思茅松〉桤木〉杉木(Cunninghamia lanceolate)〉其它针叶,主要森林类型的碳密度范围为8.60~70.90 t.hm-2。(2)2005—2006年间,景洪森林植被整体碳储量为23 299 801.23 t,碳密度范围为8.78~73.35 t.hm-2;勐海森林植被整体碳储量为14 058 043.42 t,碳密度范围为7.95~59.51 t.hm-2;勐腊森林植被整体碳储量为25 050 562.32 t,碳密度范围为8.46~98.73 t.hm-2。可见,1993—2006年间,西双版纳森林植被起到了重要的碳汇功能,且其碳汇功能呈上升趋势。  相似文献   

5.
选取福建西北部地区多群落类型组成的常绿阔叶混交林为研究对象,通过典型样地调查法,对生态系统各个层次进行取样调查,采用“相对生长法”计算乔木层生物量,灌木层、草本层和凋落物层采用全部收获法测得其生物量,对土壤层的调查采用剖面法加土钻法,代表性样品碳含量的测定采用重铬酸钾-外加热容量法。在此基础上,分析了该地区不同林龄常绿阔叶林生态系统碳储量及其格局特征,结果表明,(1)闽西北地区常绿阔叶林生态系统平均碳储量为260.63 t·hm-2。在每个发育阶段,各层片对整个生态系统碳储量的贡献率相对稳定,空间分布格局特征相似。幼龄林、中龄林、近熟林、成过熟林生态系统的碳储量分别为192.14、221.15、317.11和312.12 t·hm-2,基本表现出随林龄增加而逐渐增大的趋势。(2)乔木层、灌木层、草本层、凋落物层的平均碳质量分数分别为48.5%、46.9%、41.2%、44.0%,每个层片中,各器官的碳含量差异不大,乔木层、灌木层及草本层的碳质量分数表现出随层片高度降低而减小的趋势。土壤碳质量分数由表层到底层逐渐减小。0~10、10~20 cm土层碳质量分数均显著大于其余三个土层。(3)生物量碳储量在每个层片随着龄组不同,表现出不同的变化趋势。乔木层碳储量大小排序为近熟林﹥成过熟林﹥中龄林﹥幼龄林,灌木层与草本层在不同发育阶段的碳储量,均表现出以下规律:从幼龄林到中龄林不断增长,在中龄林达到最大值后,又随发育的进行显现出不断下降的趋势。随着地表凋落物现存量的不断增加,其碳储量也表现出幼龄林﹥中龄林﹥近熟林﹥成过熟林的趋势。土壤的平均碳储量为134.986 t·hm-2,随着林分发育,表现为成过熟林﹥近熟林﹥中龄林﹥幼龄林。  相似文献   

6.
不同林分密度对尾巨桉生物产量及生产力的影响研究   总被引:3,自引:0,他引:3  
对湘南低山丘岗区密度为600、900和1200株·hm-2的6年生尾巨桉丰产示范林进行了生物量及生产力的测定分析.结果表明:单株生物量随密度的增加而明显减小,低密度林分是高密度林分的4.36倍;林分生物量随密度的增加而减小,低密度林分比高密度林分高出48.26t·hm-2.年均净生物量分别达到14.86,11.42,6.82t·hm-2·a-1.林分各组分的生物量随密度的增大而减小,并出现W干>W根>W枝的规律.林分结构以低密度林分合理,叶面积指数最高,干材生物量达60%以上.在湘南低山丘岗区发展潜力大,可作为短周期纸浆材林培育首选树种.  相似文献   

7.
森林碳储量是森林生态系统碳库的重要组成成分,在全球碳循环中发挥着重要的作用。以韶关小坑林场山杜英(Elaeocarpus sylvestris)林为研究对象,研究其植被层和凋落物层的生物量、碳储量分配格局,为山杜英人工林的固碳能力和碳汇功能研究提供参考。在林地内建立3个20 m×20 m的样地,采用径阶标准木法,选取10株标准木,按照枝、叶、干和根分别进行取样。每个样地分别设置5个灌木样方(2 m×2 m)、草本样方(1 m×1 m)和凋落物样方(1 m×1 m)样方,收获样方内全部的灌木和草本及凋落物,并各取300 g样品,带回实验室分析。结果表明,山杜英林生物量为34.89 t·hm~(-2),平均碳质量分数为463.79 g·kg~(-1),碳储量为16.65 t·hm~(-2);山杜英林垂直结构的各组分中,乔木层的生物量(26.76 t·hm~(-2))和碳储量(12.85 t·hm~(-2))最大,占比分别为76.70%和77.18%;乔木层各组分中,树干的生物量(13.60 t·hm~(-2))和碳储量(6.62t·hm~(-2))最大,占比分别为50.82%和51.52%。山杜英林树干碳储量是乔木层碳储量的主体,因此应充分利用其生长特性,最大限度地增加树干碳储量,从而增加林分植被层碳储量。该林分具有较大的碳汇潜力,可通过提高林分密度以提高林分的碳储量。  相似文献   

8.
林伟  郑博福  胡理乐  郭建明 《生态环境》2011,20(12):1831-1835
建立林木生物量模型是估算森林生物量的重要方法之一,叶面积指数(Leaf Area Index,简称LAI)和材积与林木密切相关,是否可通过建立森林生物量与LAI或材积的相关模型来估算森林生物量,进而估算森林碳储量,值得探索。以井冈山自然保护区两种典型森林类型(常绿阔叶林和人工杉木林)为研究对象,分乔木层、植被层和总体(植被层+土壤层)3部分分别计算碳密度,并对它们与叶面积指数LAI和材积之间的相关性进行分析。结果表明:常绿阔叶林总体碳密度为38.915kg/m^2,高于人工杉木林的27.460kg/m^2;两种森林类型乔木层和植被层碳密度与材积具有很好的相关性(R^2〉0.97),在与LAI的相关性分析中,人工杉木林乔木层和植被层碳密度与LAI相关系数达到0.7以上,相关关系显著,而常绿阔叶林各层碳密度与LAI的相关性不明显;在森林总体碳密度与LAI和材积的相关性分析中发现,只有常绿阔叶林总体碳密度与材积的R^2为0.7116,达到显著水平,其它相关性水平均不显著。因此,利用材积与生物量和碳储量的相关关系来推算井冈山森林生物量和碳储量的方法是可行的,通过叶面积指数来推算森林生物量和碳储量的方法还有待进一步研究探讨。  相似文献   

9.
以南亚热带中幼龄针阔混交林为研究对象,通过典型样地调查法,对森林生态系统各个层次进行取样调查,采用12个样地实测数据和已有生物量模型相结合的方法计算乔木层生物量,灌木层、草本层和凋落物层采用全部收获法测得其生物量,对土壤层的调查采用剖面法加土钻法,代表性样品碳含量的测定采用重铬酸钾-水合加热法。在此基础上,分析了中幼龄针阔混交林碳储量及其分配格局。结果表明,主要造林树种树根、树杆、树枝和树叶碳含量均值分别为45.07%、46.73%、46.30%和47.72%。植物碳含量表现为乔木〉灌木〉草本。乔木碳储量占植被总碳储量比例介于63.38%-94.08%之间,灌木碳储量所占比例介于3.55%-12.67%之间,而草本碳储量仅介于为1.28%-23.95%之间,不同林龄段乔木和灌木碳储量均值随林龄的增加呈上升趋势,而草本碳储量呈下降趋势。土壤碳储量介于106.73-136.61 t·hm^-2之间,土壤碳储量随林龄的增加呈现出先降低后升高的趋势。针阔混交林总碳储量介于134.79-162.60 t·hm^-2之间,分配格局表现为土壤层〉植被层〉凋落物层。土壤层碳储量所占总碳储量比例范围为78.34%-94.45%,植被层所占比例介于4.84%-20.16%之间,凋落物层仅介于0.71%-1.50%之间,中幼龄针阔混交林碳储量主要以土壤固碳为主。研究结果为树种选择、人工林生态系统固碳潜力以及人工碳汇林的经营管理等研究提供科学参考。  相似文献   

10.
滇中亚高山典型森林生态系统碳储量及其分配特征   总被引:1,自引:0,他引:1  
同一区域不同植被类型的生长习性、土壤类型、林分立地状况等的差异,可能导致生态系统碳储量的变化。采用标准地调查和生物量实测相结合的方法,对云南省新平县磨盘山国家森林公园5种典型森林类型——华山松(Pinusarmandii)林、云南松(Pinus yunnanensis)林、滇油杉(Keteleeria evelyniana)林、高山栎(Quercus aquifolioides)林和常绿阔叶林各器官(叶、枝、干、皮和根)碳含量、生物量、碳储量及分配特征进行了比较研究,探讨该区域典型森林生态系统碳储量及其分配格局,揭示滇中亚地区各林分植被层的碳源-汇变化和土壤各层碳动态规律。结果表明,(1)5种林分类型各器官碳含量在45.60%~57.60%之间波动,乔木层、灌木层、草本层和凋落物生物量分别占植被层的56.46%~92.28%、1.12%~13.15%、0.003%~2.19%和6.21%~30.26%。各林分类型植被层碳储量大小表现为:华山松常绿阔叶林云南松滇油杉高山栎。(2)5种林分的土壤碳储量随着土层深度的增加而显著降低,主要集中在0~30 cm表土层,占总碳储量的52.6%~79.8%;0~60 cm土壤碳储量大小顺序表现为:滇油杉常绿阔叶林华山松高山栎云南松。(3)5种林分的生态系统碳储量表现为:常绿阔叶林华山松滇油杉云南松高山栎,其中乔木层和土壤层之和占总碳储量的95.1%~99.2%,林下植被层占比较低。华山松、滇油杉和常绿阔叶林生态系统具有较高的碳储量,云南松林和高山栎林植被碳储潜力较大,应通过制定出切实可行的森林管理措施,提高林分质量、增加林分碳密度,发挥其更大碳汇功能。  相似文献   

11.
在江淮山地丘陵区,通过样地调查,研究了坡向和w对麻栎(Quercusacutisima)人工林系统碳密度及其空间分布的影响。结果表明:阴坡(SHS)树木碳密度显著高于阳坡(sus)(P〈0.05),Wt镕i《1低的立地(sus)树木碳密度显著高于w、高的(suss)(P〈0.05)。3种立地条件下麻栎各器官碳密度分配均为:干碳密度〉根碳密度〉枝碳密度〉叶碳密度。SUS和SHS林木分配较多的碳同化物供给树干生长,SUSS林木分配较多的碳同化物供给根系和枝的生长。凋落物碳密度在SUS和SHS之间没有显著差异(P〉0.05),而SUSS则显著低于SUS和SHS(JPl〈0.05)。整个剖面(0~50cm)土壤有机碳密度SHS显著高于SUS和SUSS(P〈O.05),SUS和SUSS之间没有显著差异(P〉0.05)。麻栎人工林系统总碳密度大小为SHS(146.9t·hm^2。)〉SUS(116.9t·hm^-2)〉SUSS(102.6t·hm^-2),SHS显著高于其他2种立地条件(P〈0.05),SUS与SUSS之间没有显著差异(P〉0.05)。3种立地条件下均为土壤碳密度〉树木碳密度〉凋落物碳密度,凋落物碳密度占林分总碳密度的比例仅为2.1%~3.6%。SUS和SHS土壤碳密度占林分总碳密度的比例低于SUSS,而树木碳密度占林分总碳密度比例则相反。由此可见,在江淮山丘区,w较低的阴坡(SHS)最有利于麻栎人工林碳储量的累积,相对于w、较高的立地(suss),较低的Wf±镕6砾1(sus)更有利于树木碳储量的增加。  相似文献   

12.
研究了福建三明27a生杉机光木混交林和杉木群落细根(d<2mm)的生产力、分布、和养分归还。结果表明,混交林细根生物量、N、P养分现存量分别为5.381thm^2、48.085kghm^-2和4.174kghm^-2,分别比杉木纯林增加17.4%、27.2%和20.0%,混交林林细根的年净生产力达4.124thm^-2a^-1,比纯林高出16.9%,混交林杉木和观光木细根均在表层土壤富集,而在较深层土壤再会得分布具镶嵌性;与混交林杉林相比,纯林杉木土吉表层细根量较少,最大分布层次下移,混交林中观光木细根的周转速率咪1.16,杉木为0.96和0.95;而林下植被层细根周转速率(1.46-1.52)均同于相应的乔木层,混交林细根的年死亡量、N和P养分年归还量分别达2.119thm^-2、18.559kghm^-21.565kgkhm^-2,分别是纯林的1.21倍、1.23倍和1.14 倍,其中林下植被细根占有较为重要位置,对细根分布与土壤性质的相关分析表明,细根的垂直分布与土壤全N的相关性最强(0.87-0.89)。  相似文献   

13.
对重庆四面山杉木纯林、杉木×马尾松、杉木×马尾松×木荷、木荷×石栎×枫香×香樟、木荷×石栎人工林进行了有机碳储量研究。运用网格取样法取样,每个样地各层各取样81个,共计取样810个。结果表明:(1)林分类型不同,A层土壤有机碳含量总体差异显著(p〈0.05)。在此五种林分类型中,土壤平均有机碳含量以杉木人工纯林为最高,石栎木荷枫香香樟人工混交林为最小;B层土壤有机碳含量总体差异不显著(p〉0.05)。在垂直剖面上,五种人工林均差异显著(p〈0.05),且表现出随着土层深度的增加,林下土壤有机碳含量随之减小,体现出土壤有机碳含量的表聚作用。(2)有机碳储量规律基本与土壤有机碳含量规律一致。在垂直剖面上,此五种人工林有机碳储量均差异显著(p〈0.05),表现出随着土层深度的增加而减小的规律。不同林种类型、同一土层深度或是不同土层深度、同一林种类型其有机碳储量变异系数大小均不一样,这说明此五种林地土壤普遍存在空间异质性且其异质程度不一样。(3)就 A 土层而言,本研究区五种人工林平均有机碳密度为5.34 kg·m^-2,比相关研究的重庆市土壤有机碳密度3.11 kg·m^-2,全国森林土壤有机碳密度4.24 kg·m^-2,全国土壤有机碳密度2.67kg·m^-2等分别多出71.70%,25.94%,100%。  相似文献   

14.
刘秉儒 《生态环境》2010,19(4):883-888
土壤微生物量是陆地生态系统碳循环的重要组成部分,在生态系统物质循环和能量转化中占有特别重要的地位。开展土壤微生物量与海拔高度的关系的研究,能促使人们对土壤微生物空间分布格局及其形成机制的认识,预测全球变化对生态系统功能的影响。本文对贺兰山不同海拔梯度具有代表性的荒漠化草原(HM)、蒙古扁桃灌丛(BT)、油松林(YS)、青海云杉林(QH)和高山草甸(CD)等5种植物群落土壤微生物生物量及其微生物商进行了研究。结果表明:表层土壤(0~20 cm)微生物生物量碳(MBC)、氮(MBN)大小次序为:CD〉QH〉YS〉BT〉HM,MBC、MBN随海拔梯度的升高显著增加,与土壤有机碳、氮含量有着一致的变化规律,但是微生物商(qMB)表现出沿海拔梯度先增加后减小的变化趋势,最大值出现在蒙古扁桃灌丛土壤,MBC/MBN则没有明显的变化规律。相关分析表明,不同海拔高度的土壤微生物量碳氮不仅与年均降水量、土壤含水量,而且与土壤有机碳、全氮呈显著线性正相关关系(P〈0.01),但是与年均气温、土壤容重呈显著线性负相关关系(P〈0.01)。贺兰山土壤微生物量碳、氮随海拔高度升高而增加,降水量、气温、土壤湿度、土壤有机碳和全氮可能是影响土壤微生物量沿海拔梯度变化的关键因子。  相似文献   

15.
湘乡市16年生不同密度的马尾松(Pinus massoniana)飞播林林分单株生物量随密度的增加而明显减小,低密度林分是高密度林分的2 42倍,高出18.33kg;当林分密度一定后,林分生物量同样随密度的增加而减小,低密度林分比高密度林分高出21.81t/hm2。林分各组生物量随密度增大而减小,并出现W>W根>W枝>W皮>W叶的规律。年均净生长量低密度林分是高密度林分的1.40倍。  相似文献   

16.
春玉米种植密度对土壤有机碳组分的影响   总被引:1,自引:0,他引:1  
通过西辽河灌区连续3 a的田间试验,研究春玉米不同种植密度(60 000、75 000和90 000株·hm-2)下土壤有机碳组分的质量分数及空间分布特征,阐明了春玉米种植密度对不同层次土壤有机碳组分的影响机制。结果表明:高、低密度均增加土壤0~40 cm土层有机碳质量分数,中密度下促进土壤微生物生物量碳增加。随着种植密度的加大土壤中活性有机碳增加,轻组有机碳减少。玉米生长主要促进10~20 cm土层有机碳的耗损,高密度下促进犁底层(20~40 cm)土壤有机碳质量分数及其活性,使其轻组有机碳减少,微生物生物量碳增加。低密度下主要增加表层(0~10 cm)土壤有机碳质量分数。种植密度通过影响根系群体生物量及其分布,调节土壤微生物活性、残落物碳输入影响土壤有机碳组分。适当的增加春玉米种植密度有利于春玉米农田高产固碳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号