首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combustion and fluid flow characteristics of coflowing LPG and kerosene have been investigated experimentally. A cylindrical water cooled combustion chamber was used to investigate the effect of changing the injection location and percentage of liquid fuel during gaseous fuel combustion. It was found that the injection of liquid fuel leads to an increase in the absolute value of maximum positive axial velocity and reduces the absolute value of the maximum negative axial velocity compared to the case of LPG alone. Also, a stable temperature distribution is noticed at axial distance of X/D approximately equal to 2.15 (where X is the axial distance measured from the inlet of diffuser, and D is chamber diameter). This is less than that of gaseous fuel combustion (approximately equal to 2.91). The change of injection location leads to a reduction in values of gas temperatures at Xinj/D=0.15 then it increased to reach maximum values at Xinj/D=0.35 which is approximately the same value for combustion of LPG fuel only. Any further increase in the injection location leads to a reduction in gas temperature, especially at the upstream sections of the combustion chamber. Also, it was found that values of temperature along the combustion chamber were decreased with increasing the percentage of the injected liquid fuel due to incomplete combustion of liquid fuel. Values of combustion chamber efficiency (η) for all percentage of liquid fuel at Xinj/D=0.35 are higher than those for combustion of LPG alone.  相似文献   

2.
An experimental study of flame propagation, acceleration and transition to detonation in hydrogen–air mixture in 2-m-long rectangular cross-section channel filled with obstacles located at the bottom wall was performed. The initial conditions of the hydrogen–air mixture were 0.1 MPa and 293 K and stoichiometric composition (29.6% H2 in air). The channel width was 0.11 m and blockage ratio was 0.5 in all experiments. The effect of channel geometrical scale on flame propagation was studied by using four channel heights H of 0.01, 0.02, 0.04, and 0.08 m. In each case, the obstacle height was equal to H/2 and the obstacle spacing was 2H.

The propagation of flame and pressure waves was monitored by four pressure transducers and four ion probes. The pairs of transducers and probes were placed at various locations along the channel in order to get information about the progress of the phenomena along the channel.

As a result of the experiments, the deflagration and detonation regimes and velocities of flame propagation in the obstructed channel were established.  相似文献   


3.
4.
Flame propagation and combustion characteristics of methane/air mixed gas in gas explosion were studied in a constant volume combustion bomb. Stretched flame propagation velocity, unstretched laminar flame propagation velocity, unstretched laminar combustion velocity and Markstein length were obtained at various ratios of nitrogen to gas mixture. Combustion stability at various ratios of nitrogen to gas mixture was analyzed by analyzing the pictures of flame propagation. Furthermore, the effect of initial pressure on the flame propagation and combustion characteristics of methane/air mixed gas in gas explosion was analyzed. The results show that the unstretched laminar flame propagation velocity, the unstretched laminar combustion velocity, Markstein length, flame stability, and the maximum combustion pressure decrease distinctly with the increase of nitrogen fraction in the gas mixture. At the same ratios of nitrogen to gas mixture, Markstein length, unstretched laminar flame propagation velocity and unstretched laminar combustion velocity decrease and the maximum combustion pressure increase with the increase of initial pressure of the gas mixture. When nitrogen fraction in the gas mixture is over 20%, the flame will be unstable and is easy to exterminate.  相似文献   

5.
Accidental explosions are a plausible danger to the chemical process industries. In the event of a gas explosion, any obstacles placed within the path of the flame generate turbulence, which accelerates the transient flame and raises explosion overpressure, posing a safety hazard. This paper presents numerical studies using an in-house computational fluid dynamics (CFD) model for lean premixed hydrogen/air flame propagations with an equivalence ratio of 0.7. A laboratory-scale combustion chamber is used with repeated solid obstacles. The transient compressible large eddy simulation (LES) modelling technique combined with a dynamic flame surface density (DFSD) combustion model is used to carry out the numerical simulations in three-dimensional space. The study presented uses eight different baffle configurations with two solid obstructions, which have area blockage ratios of 0.24 and 0.5. The flame speed, maximum rate of pressure-rise as well as peak overpressure magnitude and timing are presented and discussed. Numerical results are validated against available published experimental data. It is concluded that, increasing the solid obstacle area blockage ratio and the number of consecutive baffles results in a raised maximum rate of pressure rise, higher peak explosion overpressure and faster flame propagation. Future model development would require more experimental data, probably in a more congested configuration.  相似文献   

6.
基于有障碍物氢气燃烧实验装置进行数值模拟研究,采用Fluent软件分析了半开口管道内障碍物对氢气/空气燃烧特性的影响。结果表明:障碍物会促进实验管段内氢气火焰加速,随着障碍物阻塞率和数量的增加,火焰加速更快且燃烧压力峰值更大;在相同阻塞率下,障碍物形状对氢气火焰速度和燃烧压力峰值的影响很小;燃烧压力随障碍物间距的增大先增大后减小,障碍物间距为3倍管道内径时产生的燃烧压力峰值最大。  相似文献   

7.
针对由一定压力的单相或两相介质泄漏或压力泄放系统排放引起的喷射火,利用gambit生成计算区域网格,得到相应的计算模型.再利用Fluent软件中的离散相模型计算气体流动,采用Realizable k-epsilon湍流模型和部分预混燃烧模型来预测燃料的燃烧,模拟了戊烷燃料燃烧和湍动多相流场,给出了燃烧速度矢量、温度和组...  相似文献   

8.
The propagation of a flame is investigated experimentally and theoretically for a large, horizontal combustion tube containing a mixture of air and aluminum powder with pre-existing turbulence. One end of the tube is closed and the other is connected to a large dump-tank. Twenty dispersion systems are used on the tube to produce a uniform suspension of aluminum dust in the tube with a mean diameter of 6 μm. The characteristics of a flame front from the ignitors at the closed end are measured using photodiodes and the development of pressure is monitored by transducers. Experimental results revealed the entire process of an accelerating flame and the development of shock waves. A set of conservation equations for two-phase turbulent combustion flow is derived, using the two-fluid model, kε model, Hinze–Tchen model and EBU-Arrhenius model for turbulent combustion. The SIMPLE scheme usually applied to the homogeneous turbulent combustion is extended to fit this two-phase, reactive behavior. The results of calculations show the positive feedback coupling among combustion, expansion and turbulence during flame propagation. Computed and measured results are generally in good agreement.  相似文献   

9.
利用球形发展火焰研究了常温常压下不同当量比,不同相态时2,5-二甲基呋喃-空气的层流燃烧速度和马克斯坦长度,分析了火焰拉伸对火焰传播速度的影响。研究结果表明:随着当量比的增加,2,5-二甲基呋喃-空气混合气的马克斯坦长度减少,火焰的稳定性减弱。并且分别计算出当量比为1.25和1.5的层流燃烧速度,分别为:1.189m/s,1.135m/s.。对于同一当量比1.5的情况下,不同相态的2,5-二甲基呋喃-空气混合物,在相同时刻的气液两相混合物的火焰半径已经拉伸火焰传播速度远远大于纯气相的混合物。  相似文献   

10.
Flame speeds and rates of pressure rise for gaseous explosions in a 76 mm diameter closed cylindrical vessel of large length to diameter ratio (L/D = 21.6), were quantitatively investigated. Methane, propane, ethylene and hydrogen mixtures with air were studied across their respective flammability ranges. Ignition was affected at one end of the vessel. Very fast flame speeds corresponding to high rates of pressure rise were measured in the initial 5–10% of the total explosion time. During this period 20–35% of the maximum explosion pressure was produced, and over half of the flame propagation distance was completed. Previous work has concentrated on the later stages of this type of explosion; the development of tulip flames, pressure wave effects and transition to turbulence. The initial fast phase is very important and should dominate considerations in pressure relief vent design for vessels of large L/D.  相似文献   

11.
The reactivity of a combustible dust cloud is traditionally characterized by the so-called KSt value, defined as the maximum rate of pressure rise measured in constant volume explosion vessels, multiplied with the cube root of the vessel volume. The present paper explores the use of an alternative parameter, called the maximum effective burning velocity (ueff,max), which also is derived from pressure–time histories obtained in constant volume explosion experiments. The proposed parameter describes the reactivity of fuel–air mixtures as a function of the dispersion-induced turbulence intensity. Procedures for estimating ueff,max from tests in both spherical and cylindrical explosion vessels are outlined, and examples of calculated values for various fuel–air mixtures in closed vessels of different sizes and shapes are presented. Tested fuels include a mixture of 7.5% methane in air, and suspensions of 500 g/m3 cornstarch in air and 500 g/m3 coal dust in air. Three different test vessels have been used: a 20-l spherical vessel and two cylindrical vessels, 7 and 22 l. The results show that the estimated maximum effective burning velocities are less apparatus dependent than the corresponding KSt values.  相似文献   

12.
To evaluate the hazard of combined hydrogen/dust explosions under severe accident conditions in International Thermonuclear Experimental Reactor (ITER), standard method of 20-L-sphere was used to measure the explosion indices of 4-μm fine graphite dust in lean hydrogen/air mixtures. The mixtures were ignited by a weak electric spark. The tested fuel concentrations were 8–18 vol% H2 and 25–250 g/m3 dust. If the hydrogen content is higher than 10 vol%, the dust constituent can be induced to explode by the hydrogen explosion initiated by a weak electric spark. Depending on the fuel component concentrations, the explosions proceed in either one or two stages. In two-stage explosions occurring at low hydrogen and dust concentrations, the mixture ignition initiates first a fast hydrogen explosion followed by a slower phase of the dust explosion. With increasing dust concentration, the dust explodes faster and can overlap the hydrogen-explosion stage. At higher hydrogen concentrations, the hybrid mixtures explode in one stage, with hydrogen and dust reacting at the same time scale. Maximum overpressures of hybrid explosions are higher than those observed with hydrogen alone; maximum rates of pressure rise are lower in two-phase explosions and, generally, higher in one-stage explosions, than those characteristic of the corresponding H2/air mixtures.  相似文献   

13.
In the present work, a series of experiments have been performed to analyze the explosion characteristics of ethanol-gasoline with various blended ratios (0%, 5%, 10%, 15%, 30%, 50%, 70%, 80%, and 100%). A vented rectangular vessel with a cross-section of 100 mm × 100 mm, 600 mm long and a 40 mm diameter vent on the top is used to carry out the experiments. The flame propagation is recorded by a phantom high-speed camera with 5000 fps, while the histories of the explosion overpressure are measured by two PCB pressure sensors and the explosion sound pressure level is obtained by a CRY sound sensor. The results indicate that the maximum overpressure and flame propagation speed increases linearly as the blended ratio increases when the initial volume of blended fuel is 1.0 mL; While the change of explosion overpressure and flame propagation speed shows a trend of decreasing at first and then increasing as the concentration increases to 1.8 mL. It is also found that the peak of the sound pressure level exceeds 100 dB under all tests, which would damage the human's hearing. What's more, relationships between explosion overpressure and sound pressure level are examined, and the change of the maximum overpressure can be reflected to some extent by the measurement of the maximum sound pressure level. The study is significant to reveal the essential characteristic of the explosion venting process of ethanol-gasoline under different initial blended ratios, and the results would help deepen the understanding of ethanol-gasoline blended fuels explosion and the assessment of the explosion hazardous.  相似文献   

14.
针对油水两相流经过弯管时的流向改变会导致流体速度和压力发生突变,造成发生静电事故和腐蚀事故风险上升 的不利影响,提出了RSM模型和Mixture模型相结合的安全分析方法。该方法对不同入口速度和含水率的油水两相流进行 数值模拟,并用Origin软件拟合了进口最大允许流速与管径及含水率的经验关系。结果表明,在含水率和入口速度一定 时,随着管径的增加,弯管处的最大速度呈现逐渐减小的趋势:当管径和入口速度一定时,随着含水率的增加,弯管处 的最大速度也逐渐减小。最大压力出现在弯管外拱壁处,最小压力出现在弯管内侧拱壁处。在实际生产中,增加弯管下 游直管段内侧壁的壁厚,可有效防止空化腐蚀所造成的危害;通过含水率来确定安全流速,可有效降低静电事故的风险 。  相似文献   

15.
大型相连容器中火焰传播的研究   总被引:1,自引:1,他引:0  
为了进一步了解相连装置中粉尘爆炸的火焰传播行为和压力发展,为该结构的安全防护设计提供有价值的信息,采用大型实验装置对相连容器中玉米淀粉/空气混合物爆炸时的火焰传播行为进行了实验研究,同时采用已开发的数值模型对实验进行仿真计算。实验表明:粉尘浓度的变化对粉尘爆炸的火焰传播行为有重要影响;在粉尘浓度很低的情况下,火焰仍然能够在管道中加速传播且爆炸发展的最终结果相当猛烈。数值模型采用欧拉-拉格朗日方法模拟两相流现象,通过求解非稳态的湍流两相反应流守恒方程对实验进行二维仿真,计算结果与实验结果符合性较好,表明该模型可以很好地应用于粉尘爆炸火焰传播的研究。  相似文献   

16.
The critical pressure ratio of the homogeneous two-phase nozzle flow model known as the Omega method is expressed in function of the Omega Parameter as the exact numerical solution of a transcendental equation. A well fitting, easy to use, explicit approximation for flashing and non-flashing flows is presented here. The validation against the exact numerical solution proves that this new formula is better fitting than the other ones in the technical literature for both single and two-component flows.  相似文献   

17.
The paper describes the analysis of the potential effects of releases from compressed gaseous hydrogen systems on commercial vehicles in urban and tunnel environments using computational fluid dynamics (CFD). Comparative releases from compressed natural gas systems are also included in the analysis.

This study is restricted to typical non-articulated single deck city buses. Hydrogen releases are considered from storage systems with nominal working pressures of 20, 35 and 70 MPa, and a comparative natural gas release (20 MPa). The cases investigated are based on the assumptions that either fire causes a release via a thermally activated pressure relief device(s) (PRD) and that the released gas vents without immediately igniting, or that a PRD fails. Various release strategies were taken into account. For each configuration some worst-case scenarios are considered.

By far the most critical case investigated in the urban environment, is a rapid release of the entire hydrogen or natural gas storage system such as the simultaneous opening of all PRDs. If ignition occurs, the effects could be expected to be similar to the 1983 Stockholm hydrogen accident [Venetsanos, A. G., Huld, T., Adams, P., & Bartzis, J. G. (2003). Source, dispersion and combustion modelling of an accidental release of hydrogen in an urban environment. Journal of Hazardous Materials, A105, 1–25]. In the cases where the hydrogen release is restricted, for example, by venting through a single PRD, the effects are relatively minor and localised close to the area of the flammable cloud. With increasing hydrogen storage pressure, the maximum energy available in a flammable cloud after a release increases, as do the predicted overpressures resulting from combustion. Even in the relatively confined environment considered, the effects on the combustion regime are closer to what would be expected in a more open environment, i.e. a slow deflagration should be expected.

Among the cases studied the most severe one was a rapid release of the entire hydrogen (40 kg) or natural gas (168 kg) storage system within the confines of a tunnel. In this case there was minimal difference between a release from a 20 MPa natural gas system or a 20 MPa hydrogen system, however, a similar release from a 35 MPa hydrogen system was significantly more severe and particularly in terms of predicted overpressures. The present study has also highlighted that the ignition point significantly affects the combustion regime in confined environments. The results have indicated that critical cases in tunnels may tend towards a fast deflagration, or where there are turbulence generating features, e.g. multiple obstacles, there is the possibility that the combustion regime could progress to a detonation.

When comparing the urban and tunnel environments, a similar release of hydrogen is significantly more severe in a tunnel, and the energy available in the flammable cloud is greater and remains for a longer period in tunnels. When comparing hydrogen and natural gas releases, for the cases and environments investigated and within the limits of the assumptions, it appears that hydrogen requires different mitigation measures in order that the potential effects are similar to those of natural gas in case of an accident. With respect to a PRD opening strategy, hydrogen storage systems should be designed to avoid simultaneous opening of all PRD, and that for the consequences of the released energy to be mitigated, either the number of PRDs opening should be limited or their vents to atmosphere should be restricted (the latter point would require validation by a comprehensive risk assessment).  相似文献   


18.
为了解泄爆容器中粉尘爆炸的发展过程,采用试验和数值模拟相结合的方法对玉米淀粉在圆柱形容器内的泄爆过程进行研究。数值模型采用欧拉–拉格朗日方法模拟粉尘爆炸的两相流问题,通过求解非稳态的湍流两相反应流守恒方程对试验进行二维仿真。试验和模拟结果表明,点火位置对爆炸发展过程有明显影响,点火位置离泄爆口越远,容器中的最大泄爆压力Pred,max越高。在粉尘爆炸的安全防护设计中,应把点火位置作为重要影响因素之一加以考虑。  相似文献   

19.
为研究超细聚苯乙烯微球粉体的燃爆特性,通过粉尘层最低着火温度测试装置、MIE-D1.2最小点火能测试装置、20 L球形爆炸测试装置,对其最低着火温度、最大爆炸压力、最小点火能量(MIE)等爆炸特性参数进行测定,探讨了加热温度、点火延滞时间、粉尘质量浓度、粉尘粒径对粉体燃爆特性的影响。结果表明:超细聚苯乙烯微球粉尘层在350℃左右时会发生无焰燃烧,且加热温度越高,粉体粒径越小,粉尘层发生着火时所需的时间越短;当粉体质量浓度为250 g/m3时,最大爆炸压力达到0.65 MPa,质量浓度为500 g/m3时,最大爆炸压力的上升速率达90 MPa/s以上;随点火延滞时间增加,最小点火能表现出先缓慢减小再急剧增大的规律;随粉尘质量浓度增加,最小点火能逐渐降低,当粉尘质量浓度超过500g/m3后逐渐趋于稳定。  相似文献   

20.
Scaling parameters for vented gas and dust explosions   总被引:3,自引:0,他引:3  
Results of experiments or calculations for vented explosions are usually presented by expressing a term containing the peak (reduced) pressure as a function of a vent parameter. In gas explosions, the reactivity of the system has been typically characterized through an effective burning velocity, uf. In the case of dust explosions, a normalized peak rate of pressure rise, K(=V1/3(dp/dt)max), has been used instead. Depending on the chosen approach, comparisons between systems with the same “reactivity” take different meanings. In fact, correlation formulas resulting from these two approaches imply different scaling between important system parameters. In the case of a constant-uf system, and for sufficiently large vent areas, the reduced pressure, Δpr, is approximately proportional to the square of the peak unvented pressure, Δpm. On the other hand, correlations developed for constant-K systems imply proportionality of Δpr with Δpm raised to a power between −5/3 and −1, with the exact value depending on the assumptions made on the shape of the pressure profile. While the ultimate resolution of the details of the scaling may require recourse to experiments, this theoretical analysis offers a tool for the planning of such experiments and for the interpretation of their results. The paper provides a discussion of these scaling issues with the help of predictions from an isothermal model of vented explosions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号