首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of social insects to discriminate against non-nestmates is vital for maintaining colony integrity, and in most social insect species, individuals act aggressively towards non-nestmates that intrude into their nest. Our experimental field data revealed that intra-colony aggression in the primitive bulldog ant Myrmecia nigriceps is negligible; our series of bioassays revealed no significant difference in the occurrence of aggression in trials involving workers from the same, a close (less than 300 m) or a far (more than 1.5 km) nest. Further, non-nestmate intruders were able to enter the nest in 60% of our trials; a similar level was observed in trials involving nestmates. These results suggest that workers of M. nigriceps are either unable to recognize alien conspecifics or that the costs of ignoring workers from foreign colonies are sufficiently low to favor low levels of inter-colony aggression in this species.  相似文献   

2.
We investigated nest odor dynamics in the common yellow jacket, Vespula vulgaris. In six isolated colonies, we tested the aggression rates toward dead nestmates that had been stored for 10 min, 10 and 19 days outside their colonies at –76 °C. The aggression rate increased from about 12% toward recently killed nestmates up to 30% toward nestmates killed 19 days before the experiment. Obviously, the conserved nest odor profile of the nestmates frozen for several days did not match with that of their colony anymore. This indicates a change of the nest odor within the colony. In a second experiment, we kept two colonies each in one nest box with a complete separation of both neighbor nests by a solid wall inside the box for 28 days. In confrontation experiments, the colony members treated dead foragers from the neighbor nest as aggressively as dead foreign, non-neighbor workers (about 39% each) whereas only about 14% reacted aggressively toward dead nestmates. Seventeen days after the replacement of the solid wall by a metallic grid, which allowed no physical contact but air exchange between the two neighbor colonies, the aggression rates toward foreign workers and nestmates remained relatively unaffected whereas it decreased significantly toward dead neighbors to about 11%. These results suggest a nest odor dynamic caused by volatiles transferred between two adjacent colonies, resulting in an equalization of the former colony specific nest odors. A change of nest odor dynamics influenced by volatiles was so far described only for one ant species at all.  相似文献   

3.
How floral odours are learned inside the bumblebee (Bombus terrestris) nest   总被引:1,自引:0,他引:1  
Recruitment in social insects often involves not only inducing nestmates to leave the nest, but also communicating crucial information about finding profitable food sources. Although bumblebees transmit chemosensory information (floral scent), the transmission mechanism is unknown as mouth-to-mouth fluid transfer (as in honeybees) does not occur. Because recruiting bumblebees release a pheromone in the nest that triggers foraging in previously inactive workers, we tested whether this pheromone helps workers learn currently rewarding floral odours, as found in food social learning in rats. We exposed colonies to artificial recruitment pheromone, paired with anise scent. The pheromone did not facilitate learning of floral scent. However, we found that releasing floral scent in the air of the colony was sufficient to trigger learning and that learning performance was improved when the chemosensory cue was provided in the nectar in honeypots; probably because it guarantees a tighter link between scent and reward, and possibly because gustatory cues are involved in addition to olfaction. Scent learning was maximal when anise-scented nectar was brought into the nest by demonstrator foragers, suggesting that previously unidentified cues provided by successful foragers play an important role in nestmates learning new floral odours.  相似文献   

4.
Social insects provide a useful model for studying the evolutionary balance between cooperation and conflict linked to genetic structure. We investigated the outcome of this conflict in the bumblebee, Bombus terrestris, whose annual colony life cycle is characterized by overt competition over male production. We established artificial colonies composed of a queen and unrelated workers by daily exchange of callow workers between colony pairs of distinct genetic make-up. Using microsatellite analysis, this procedure allowed an exact calculation of the proportion of worker-derived males. The development and social behavior of these artificial colonies were similar to those of normal colonies. Despite a high worker reproduction attempt (63.8% of workers had developed ovaries and 38.4% were egg-layers), we found that on average 95% of the males produced during the competition phase (CPh) were queen-derived. However, in four colonies, queen death resulted in a considerable amount of worker-derived male production. The different putative ultimate causes of this efficient control by the queen are discussed, and we suggest a possible scenario of an evolutionary arms race that may occur between these two female castes.  相似文献   

5.
Workers of the ant Temnothorax nylanderi form dominance orders in orphaned colonies in which only one or a few top-ranking workers begin to produce males from unfertilized eggs. Between one and 11 individuals initiated 80% of all aggression in 14 queenless colonies. As predicted from inclusive fitness models (Molet M, van Baalen M, Monnin T, Insectes Soc 52:247–256, 2005), hierarchy length was found to first increase with colony size and then to level off at larger worker numbers. The frequency and skew of aggression decreased with increasing size, indicating that rank orders are less pronounced in larger colonies.  相似文献   

6.
棕囊藻(Phaeocystis)因其频以囊体形式引发大面积有害藻华,而备受人们关注。因此棕囊藻成囊作用在其生态竞争以及藻华发生与发展中起着十分重要的作用。越来越多的研究表明硅藻与棕囊藻的成囊作用有着密不可分的关系。因此,本文将对硅藻与棕囊藻囊体形成的相关性研究进展进行介绍,包括硅藻与棕囊藻囊体的附着现象与发现、硅藻参与棕囊藻生活史的发展过程、硅藻促进棕囊藻囊体形成的作用性质、棕囊藻和硅藻之间附着关系的种类选择性、以及棕囊藻和硅藻之间附着关系的性质,进而揭示硅藻于棕囊藻赤潮的发生、发展的生态学意义。  相似文献   

7.
Social insect colonies respond to challenges set by a variable environment by reallocating work among colony members. In many social insects, such colony-level task allocation strategies are achieved through individual decisions that produce a self-organized adapting group. We investigated colony responses to parasitoids and native ant competitors in the red imported fire ant (Solenopsis invicta). Parasitoid flies affected fire ants by decreasing the proportion of workers engaged in foraging. Competitors also altered colony-level behaviours by reducing the proportion of foraging ants and by increasing the proportion of roaming majors, whose role is colony defence. Interestingly, the presence of both parasitism and competition almost always had similar effects on task allocation in comparison to each of the biotic factors on its own. Thus, our study uniquely demonstrates that the interactive effect of both parasitism and competition is not necessarily additive, implying that these biotic factors alter colony behaviour in distinct ways. More generally, our work demonstrates the importance of studying the dynamics of species interactions in a broader context.  相似文献   

8.
Among social insects, maintaining a distinct colony profile allows individuals to distinguish easily between nest mates and non-nest mates. In ants, colony-specific profiles can be encoded within their cuticular hydrocarbons, and these are influenced by both environmental and genetic factors. Using nine monogynous Formica exsecta ant colonies, we studied the stability of their colony-specific profiles at eight time points over a 4-year period. We found no significant directional change in any colony profile, suggesting that genetic factors are maintaining this stability. However, there were significant short-term effects of season that affected all colony profiles in the same direction. Despite these temporal changes, no significant change in the profile variation within colonies was detected: each colony’s profile responded in similar manner between seasons, with nest mates maintaining closely similar profiles, distinct from other colonies. These findings imply that genetic factors may help maintain the long-term stability of colony profile, but environmental factors can influence the profiles over shorter time periods. However, environmental factors do not contribute significantly to the maintenance of diversity among colonies, since all colonies were affected in a similar way.  相似文献   

9.
Social insect colonies, like individual organisms, must decide as they develop how to allocate optimally their resources among survival, growth, and reproduction. Only when colonies reach a certain state do they switch from investing purely in survival and growth to investing also in reproduction. But how do worker bees within a colony detect that their colony has reached the state where it is adaptive to begin investing in reproduction? Previous work has shown that larger honeybee colonies invest more in reproduction (i.e., the production of drones and queens), however, the term ‘larger’ encompasses multiple colony parameters including number of adult workers, size of the nest, amount of brood, and size of the honey stores. These colony parameters were independently increased in this study to test which one(s) would increase a colony’s investment in reproduction via males. This was assayed by measuring the construction of drone comb, the special type of comb in which drones are reared. Only an increase in the number of workers stimulated construction of drone comb. Colonies with over 4,000 workers began building drone comb, independent of the other colony parameters. These results show that attaining a critical number of workers is the key parameter for honeybee colonies to start to shift resources towards reproduction. These findings are relevant to other social systems in which a group’s members must adjust their behavior as a function of the group’s size.  相似文献   

10.
Herons (Ardeidae) frequently breed in inland forests and provide organic material in the form of carcasses of prey (that they drop) and chicks (that die) to the forest floor. Such allochthonous inputs of organic materials are known to increase arthropod populations in forests. However, the exact species that show numerical responses to allochthonous inputs in heron breeding colonies remains unclear. Very few studies have clarified which factors determine numerical responses in individual species. We used pitfall and baited traps to compare the densities of arthropods between forest patches in heron breeding colonies (five sites) and areas outside of colonies (five sites) in central Japan. The density of all arthropods was not significantly different between colonies and non-colony areas. However, significant differences between colonies and non-colony areas were found in four arthropod groups. Earwigs (Dermaptera: Anisolabididae), hister beetles (Coleoptera: Histeridae), and carrion beetles (Coleoptera: Silphidae) were more abundant in colonies, while ants (Hymenoptera: Formicidae) were less abundant in colonies. We detected numerical responses to heron breeding in two earwig, one histerid, five silphid, and one ant species. Chick and prey carcasses from herons may have directly led to increases in consumer populations such as earwigs, histerids, and silphids in colonies, while microenvironmental changes caused by heron breeding may have reduced ant abundance. In the Silphidae, five species showed numerical responses to allochthonous inputs, and the other two species did not. Numerical responses in individual species may have been determined by life history traits such as reproductive behaviour.  相似文献   

11.
Nestmate recognition in ants is possible without tactile interaction   总被引:1,自引:0,他引:1  
Ants of the genus Camponotus are able to discriminate recognition cues of colony members (nestmates) from recognition cues of workers of a different colony (non-nestmates) from a distance of 1 cm. Free moving, individual Camponotus floridanus workers encountered differently treated dummies on a T-bar and their behavior was recorded. Aggressive behavior was scored as mandibular threat towards dummies. Dummies were treated with hexane extracts of postpharyngeal glands (PPGs) from nestmates or non-nestmates which contain long-chain hydrocarbons in ratios comparable to what is found on the cuticle. The cuticular hydrocarbon profile bears cues which are essential for nestmate recognition. Although workers were prevented from antennating the dummies, they showed significantly less aggressive behavior towards dummies treated with nestmate PPG extracts than towards dummies treated with non-nestmate PPG extracts. In an additional experiment, we show that cis-9-tricosene, an alkene naturally not found in C. floridanus' cuticular profile, is behaviorally active and can interfere with nestmate recognition when presented together with a nestmate PPG extract. Our study demonstrates for the first time that the complex multi-component recognition cues can be perceived and discriminated by ants at close range. We conclude that contact chemosensilla are not crucial for nestmate recognition since tactile interaction is not necessary.  相似文献   

12.
Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers (Trigona carbonaria) immediately mummify invading adult small hive beetles (Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites.  相似文献   

13.
Social insect colonies are not the harmonious entities they were once considered. Considerable conflicts exist between colony members, as has been shown for Hymenoptera. For termites, similar studies are lacking, but aggressive manipulations have been claimed to regulate sexual development, and even to account for the evolution of workers. This study on a basal termite, Cryptotermes secundus (Kalotermitidae), suggests that the importance of aggressive manipulations in termites has been overemphasized. Wing-bud mutilations, a means proposed to regulate the development of dispersing sexuals (alates), seem to be artifacts of handling conditions that cause disturbance. Aggressive behaviors never occurred unless colonies were disturbed. Theoretical considerations further showed that the potential for intense conflict among termite nestmates is low compared to hymenopteran societies. Strong conflicts are only expected to occur over the replacement of natal reproductives that died, while less intense conflicts should exist over the development into alates when food in the colony becomes limiting. Accordingly, intracolonial aggressive interactions over replacement are common, whereas nestmates seem to manipulate alate development via proctodeal feeding when food resources decline. However, the latter is rather an honest signal than a manipulation because only the most competent prospective dispersers can impede the development of nestmates.  相似文献   

14.
While foraging, social insects encounter a dynamic array of food resources of varying quality and profitability. Because food acquisition influences colony growth and fitness, natural selection can be expected to favor colonies that allocate their overall foraging effort so as to maximize their intake of high-quality nutrients. Social wasps lack recruitment communication, but previous studies of vespine wasps have shown that olfactory cues influence foraging decisions. Odors associated with food brought into the nest by successful foragers prompt naive foragers to leave the nest and search for the source of those odors. Left unanswered, however, is the question of whether naive foragers take food quality into account in making their decisions about whether or not to search. In this study, two different concentrations of sucrose solutions, scented differently, were inserted directly into each of three Vespula germanica nests. At a feeder away from the nest, arriving foragers were given a choice between two 1.5 M sucrose solutions with the same scents as those in the nest. We show that wasps chose higher-quality resources in the field using information in the form of intranidal food-associated odor cues. By this simple mechanism, the colony can bias the allocation of its foraging effort toward higher-quality resources in the environment.  相似文献   

15.
In ants, nest relocations are frequent but nevertheless perilous, especially for the reproductive caste. During emigrations, queens are exposed to predation and face the risk of becoming lost. Therefore the optimal strategy should be to move the queen(s) swiftly to a better location, while maintaining maximum worker protection at all times in the new and old nests. The timing of that event is a crucial strategic issue for the colony and may depend on queen number. In monogynous colonies, the queen is vital for colony survival, whereas in polygynous colonies a queen is less essential, if not dispensable. We tested the null hypothesis that queen movement occurs at random within the sequence of emigration events in both monogynous and polygynous colonies of the ponerine ant Pachycondyla obscuricornis. Our study, based on 16 monogynous and 16 polygynous colony emigrations, demonstrates for the first time that regardless of the number of queens per colony, the emigration serial number of a queen occurs in the middle of all emigration events and adult ant emigration events, but not during brood transport events. It therefore appears that the number of workers in both nests plays an essential role in the timing of queen movement. Our results correspond to a robust colony-level strategy since queen emigration is related neither to colony size nor to queen number. Such an optimal strategy is characteristic of ant societies working as highly integrated units and represents a new instance of group-level adaptive behaviors in social insect colonies.  相似文献   

16.
The potential for reproductive conflict among colony members exists in all social insect societies. For example, queens and workers may be in conflict over the production of males within colonies. Kin selection theory predicts that in a colony headed by a multiply-mated queen, worker reproduction is prevented by worker policing in the form of differential oophagy. However, few studies have demonstrated that workers actually lay eggs within queenright colonies. The purpose of this study was to determine if workers laid male eggs within unmanipulated queen-right colonies of the polyandrous social wasps Vespula maculifrons and V. squamosa. We focused our analysis on an unusual brood pattern within colonies, multiple egg cells. We were primarily interested in determining if individuals reared in these irregular circumstances were queen or worker offspring. To address this question, we genotyped 318 eggs from eight V. maculifrons and two V. squamosa colonies. No worker‑reproduction was detected in any of the queenright colonies; all of the eggs found in multiple egg cells were consistent with being queen‑produced. However, the frequency of multiple egg cells differed among colonies, suggesting that queens vary in the frequency of errors they make when laying eggs within cells. Finally, we suggest that workers may not be laying eggs within queenright colonies and that worker reproduction may be controlled through mechanisms other than differential oophagy in polyandrous Vespula wasps.  相似文献   

17.
Olfactory stimuli play an important role in the host searching of larval phytophagous insects. Previous studies indicate that larvae that have to find feeding sites after hatching are generally attracted to host volatiles. However, there are few studies on the olfactory responses of neonate larvae to host volatiles in cases when those larvae hatched on the host plant. In the present study, we determined the olfactory responses of neonate larvae of the specialist flea beetle, Altica koreana Ogloblin, to host and six non-host plants, using a static-air "arena." Larvae responded significantly to the host plant Potentilla chinensis Ser. and five of six non-host plants, compared to the control. Larvae did not prefer the host plant over the non-host plants (except Artemisia sp.) when offered a choice. Additionally, odours of a non-host plant, which were unattractive to neonate larvae, may have masked the attractive odour of the host plant. These results indicate that common volatiles can play a major role in attracting larvae of this specialist to plants, but attraction to such odours may not be the major mechanism of host choice.  相似文献   

18.
Workers of polydomous colonies of social insects must recognize not only colony-mates residing in the same nest but also those living in other nests. We investigated the impact of a decentralized colony structure on colony- and nestmate recognition in the polydomous Australian meat ant (Iridomyrmex purpureus). Field experiments showed that ants of colonies with many nests were less aggressive toward alien conspecifics than those of colonies with few nests. In addition, while meat ants were almost never aggressive toward nestmates, they were frequently aggressive when confronted with an individual from a different nest within the same colony. Our chemical analysis of the cuticular hydrocarbons of workers using a novel comprehensive two-dimensional gas chromatography technique that increases the number of quantifiable compounds revealed both colony- and nest-specific patterns. Combined, these data indicate an incomplete transfer of colony odor between the nests of polydomous meat ant colonies.  相似文献   

19.
 Fungi cultivated by fungus-growing ants (Attini: Formicidae) are passed on between generations by transfer from maternal to offspring nest (vertical transmission within ant species). However, recent phylogenetic analyses revealed that cultivars are occasionally also transferred between attine species. The reasons for such lateral cultivar transfers are unknown. To investigate whether garden loss may induce ants to obtain a replacement cultivar from a neighboring colony (lateral cultivar transfer), pairs of queenright colonies of two Cyphomyrmex species were set up in two conjoined chambers; the garden of one colony was then removed to simulate the total crop loss that occurs naturally when pathogens devastate gardens. Garden-deprived colonies regained cultivars through one of three mechanisms: joining of a neighboring colony and cooperation in a common garden; stealing of a neighbor's garden; or aggressive usurpation of a neighbor's garden. Because pathogens frequently devastate attine gardens under natural conditions, garden joining, stealing and usurpation emerge as critical behavioral adaptations to survive garden catastrophes. Received: 16 June 2000 / Accepted in revised form: 14 September 2000  相似文献   

20.
In many social taxa, reproductively dominant individuals sometimes use aggression to secure and maintain reproductive status. In the social insects, queen aggression towards subordinate individuals or workers has been documented and is predicted to occur only in species with a small colony size and a low level of queen–worker dimorphism. We report queen aggression towards reproductive workers in the ant species Aphaenogaster cockerelli, a species with a relatively large colony size and a high level of reproductive dimorphism. Through analysis of cuticular hydrocarbon profiles, we show that queens are aggressive only to reproductively active workers. Non-reproductive workers treated with a hydrocarbon typical for reproductives are attacked by workers but not by queens, which suggests different ways of recognition. We provide possible explanations of why queen aggression is observed in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号