共查询到20条相似文献,搜索用时 11 毫秒
1.
There is little information on the effort put into foraging by seabirds, even though it is fundamental to many issues in behavioural ecology. Recent researchers have used changes in the underwater cruising speed of penguins to allude to prey ingestion since accelerations are thought to reflect the encounter and pursuit of prey. In this study, we attached minute accelerometers, to determine flipper beat frequency as a proxy for prey pursuit, to Little Penguins Eudyptula minor foraging in shallow waters in Western Australia. During diving, Little Penguins flapped continuously and at a regular pace of 3.16 Hz while descending the water column and throughout the bottom phase of most dives. However, the frequency and amplitude of wingbeats increased transitorily, reaching 3.5–5.5 Hz, during some dives indicating prey pursuit. Pursuit phases lasted a mean of 2.9±3.3 s and occurred principally during the bottom phases of dives (75.4%). Most dives in all birds (86%) had a clear square-shaped depth profile indicating feeding activity near the seabed in the shallow waters of the bays. Hourly maximum depth, time spent underwater, percentage of dives with pursuit events and catch per unit effort showed an overall increase from zero at ca. 0500 h to a maximum during the hours around mid-day before decreasing to zero by 1900 h. During pursuit phases, Little Penguins headed predominantly downward, probably using the seabed to assist them in trapping their prey. In the light of our results, we discuss depth use by Little Penguins and their allocation of foraging effort and prey capture success as a function of environmental conditions. 相似文献
2.
Establishing where and when predators forage is essential to understanding trophic interactions, yet foraging behavior remains poorly understood in large marine carnivores. We investigated the factors leading to foraging success in gray seals (Halichoerus grypus) in the Northwest Atlantic in the first study to use simultaneous deployments of satellite transmitters, time depth recorders, and stomach-temperature loggers on a free-ranging marine mammal. Thirty-two seals were each fitted with the three types of instrumentation; however, complete records from all three instruments were obtained from only 13 individuals, underscoring the difficulty of such a multi-instrument approach. Our goal was to determine the characteristics of diving, habitat, and movement that predict feeding. We linked diving behavior to foraging success at two temporal scales: trips (days) and bouts (hours) to test models of optimal diving, which indicate that feeding can be predicted by time spent at the bottom of a dive. Using an information-theoretic approach, a Generalized Linear Mixed Model with trip duration and accumulated bottom time per day best explained the number of feeding events per trip, whereas the best predictor of the number of feeding events per bout was accumulated bottom time. We then tested whether characteristics of movement were predictive of feeding. Significant predictors of the number of feeding events per trip were angular variance (i.e., path tortuosity) and distance traveled per day. Finally, we integrated measures of diving, movement, and habitat at four temporal scales to determine overall predictors of feeding. At the 3-h scale, mean bottom time and distance traveled were the most important predictors of feeding frequency, whereas at the 6-h and 24-h time scales, distance traveled alone was most important. Bathymetry was the most significant predictor of feeding at the 12-h interval, with feeding more likely to occur at deeper depths. Our findings indicate that several factors predict feeding in gray seals, but predictor variables differ across temporal scales such that environmental variation becomes important at some scales and not others. Overall, our results illustrate the value of simultaneously recording and integrating multiple types of information to better understand the circumstances leading to foraging success. 相似文献
3.
Elizabeth A. Daly Cassandra E. Benkwitt Richard D. Brodeur Marisa N. C. Litz Louise A. Copeman 《Marine Biology》2010,157(9):1975-1987
Juvenile salmon exhibit high growth rates upon their arrival into the marine environment. Dietary changes from freshwater
and estuarine habitats to those derived from the marine environment may play an important role in ultimate adult survival.
We measured the total lipid and fatty acid (FA) composition of juvenile Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and 18 of their potential prey items sampled from coastal waters during their first few months at sea. Coho salmon had
significant reductions in their lipid content (% wet weight) between May and June, likely due to early marine growth. We did
not find a significant drop between May and June Chinook salmon lipid content, which may indicate an earlier ontogenetic selection
to marine prey that are higher in lipids and essential fatty acids (EFAs). Juvenile salmon ate prey of both high and low lipids.
Significant FA compositional changes occurred for both coho and Chinook salmon between May and June. In May, the FA profile
of juvenile salmon, especially coho salmon, did not resemble their prey items; however, in June, there was a strong correlation
between salmon and their common fish prey as determined by gut content analysis. Significant increases in the level of EFAs,
especially docosahexaenoic acid (DHA, 22:6n-3) accounted for the majority of the monthly differences in salmon tissue FA composition.
In order for juvenile salmon to adequately meet their physiological requirements, they may have adapted to select advantageous
prey with higher levels of EFAs, especially DHA, in order to rapidly increase their growth and ultimate survival. 相似文献
4.
Memory dynamics and foraging strategies of honeybees 总被引:6,自引:0,他引:6
Summary The foraging behavior of a single bee in a patch of four electronic flower dummies (feeders) was studied with the aim of analyzing the informational components in the choice process. In different experimental combinations of reward rates, color marks, odors and distances of the feeders, the behavior of the test bee was monitored by a computer in real time by several devices installed in each feeder. The test bee optimizes by partially matching its choice behavior to the reward rates of the feeders. The matching behavior differs strongly between stay flights (the bee chooses the feeder just visited) and shift flights (the bee chooses one of the three alternative feeders). The probability of stay and shift flights depends on the reward sequence and on the time interval between successive visits. Since functions describing the rising probability of stay flights with rising amounts of sucrose solution just experienced differ for the four feeders, it is concluded that bees develop feeder-specific memories. The choice profiles of shift flights between the three alternative feeders depend on the mean reward rate of the feeder last visited. Good matching is found after visits to the low-reward feeders and poor matching following departure from the high-reward feeders. These results indicate that bees use two different kinds of memories to guide their choice behavior: a transient short-term working memory that is not feeder-specific, and a feeder-specific long-term reference memory. Model calculations were carried out to test this hypothesis. The model was based on a learning rule (the difference rule) developed by Rescorla and Wagner (1972), which was extended to the two forms of memories to predict this operant behavior. The experiments show that a foraging honeybee learns the properties of a food source (its signals and rewards) so effectively that specific expectations guide the choice behavior.
Correspondence to: R. Menzel 相似文献
5.
The indirect, ecosystem-level consequences of ocean fishing, and particularly the mechanisms driving them, are poorly understood. Most studies focus on density-mediated trophic cascades, where removal of predators alternately causes increases and decreases in abundances of lower trophic levels. However, cascades could also be driven by where and when prey forage rather than solely by prey abundance. Over a large gradient of fishing intensity in the central Pacific's remote northern Line Islands, including a nearly pristine, baseline coral reef system, we found that changes in predation risk elicit strong behavioral responses in foraging patterns across multiple prey fish species. These responses were observed as a function of both short-term ("acute") risk and longer-term ("chronic") risk, as well as when prey were exposed to model predators to isolate the effect of perceived predation risk from other potentially confounding factors. Compared to numerical prey responses, antipredator behavioral responses such as these can potentially have far greater net impacts (by occurring over entire assemblages) and operate over shorter temporal scales (with potentially instantaneous response times) in transmitting top-down effects. A rich body of literature exists on both the direct effects of human removal of predators from ecosystems and predators' effects on prey behavior. Our results draw together these lines of research and provide the first empirical evidence that large-scale human removal of predators from a natural ecosystem indirectly alters prey behavior. These behavioral changes may, in turn, drive previously unsuspected alterations in reef food webs. 相似文献
6.
7.
The ontogeny of behaviour relevant to dispersal was studied in situ with reared pelagic larvae of three warm temperate, marine,
demersal fishes: Argyrosomus japonicus (Sciaenidae), Acanthopagrus australis and Pagrus auratus (both Sparidae). Larvae of 5–14 mm SL were released in the sea, and their swimming speed, depth and direction were observed
by divers. Behaviour differed among species, and to some extent, among locations. Swimming speed increased linearly at 0.4–2.0 cm s−1 per mm size, depending on species. The sciaenid was slower than the sparids by 2–6 cm s−1 at any size, but uniquely, it swam faster in a sheltered bay than in the ocean. Mean speeds were 4–10 body lengths s−1. At settlement size, mean speed was 5–10 cm s−1, and the best performing individuals swam up to twice the mean speed. In situ swimming speed was linearly correlated (R
2=0.72) with a laboratory measure of swimming speed (critical speed): the slope of the relationship was 0.32, but due to a
non-zero intercept, overall, in situ speed was 25% of critical speed. Ontogenetic vertical migrations of several metres were
found in all three species: the sciaenid and one sparid descended, whereas the other sparid ascended to the surface. Overall,
74–84% of individual larvae swam in a non-random way, and the frequency of directional individuals did not change ontogenetically.
Indications of ontogenetic change in orientated swimming (i.e. the direction of non-random swimming) were found in all three
species, with orientated swimming having developed in the sparids by about 8 mm. One sparid swam W (towards shore) when <10 mm,
and changed direction towards NE (parallel to shore) when >10 mm. These results are consistent with limited in situ observations
of settlement-stage wild larvae of the two sparids. In situ, larvae of these three species have swimming, depth determination
and orientation behaviour sufficiently well developed to substantially influence dispersal trajectories for most of their
pelagic period. 相似文献
8.
Correlated evolution of prey chemical discrimination with foraging, lingual morphology and vomeronasal chemoreceptor abundance in lizards 总被引:3,自引:0,他引:3
William E. Cooper 《Behavioral ecology and sociobiology》1997,41(4):257-265
Comparative data from ten families of lizards suggest that correlated evolution has occurred between the ability to identify
prey chemicals and several aspects of lingual function and morphology, abundance of vomeronasal chemoreceptor cells, and foraging
behavior. Ability to discriminate prey chemicals from control substances was measured experimentally and correlated with other
variables by Felsenstein's method. This ability increased with evolutionary increases in degree of lingual protrusion during
tongue-flicking, which may reflect the tongue's ability to reach substrates to be sampled. It increased with deepened lingual
forking and greater lingual elongation, which may be important for scent-trailing and sampling ability, respectively. Discriminatory
ability also increased with abundance of vomerolfactory chemoreceptors, which presumably reflects some aspects of analytical
capacities of the vomeronasal system. Prey chemical discrimination increased with degree of active foraging. Natural selection
for improved vomerolfactory sampling and analysis of prey chemicals by active, but not ambush, foragers appears to account
for the observed relationships. In active foragers that use vomerolfaction to locate prey, natural selection favors increased
abilities to lingually sample chemicals from environmental substrates, analyze the samples for prey chemicals, and respond
appropriately if prey chemicals or possible prey chemicals are detected. Such selection can account for the observed relationships
among the sampling device and its movements, the sense, the discriminations, and variations in foraging ecology.
Received: 13 February 1997 / Accepted after revision: 12 June 1997 相似文献
9.
10.
In situ observations of foraging,feeding, and escape behavior in three orders of oceanic ctenophores: Lobata,Cestida, and Beroida 总被引:1,自引:0,他引:1
The foraging, feeding, and escape behaviors of members of four genera of oceanic ctenophores were studied by direct observation in the field during the summer of 1987 (7 July to 7 September) on R. V. Oceanus Cruise 191 to the Northern Sargasso and Slope water, in an area bounded by 34° to 39°N and 67° and 74°W. Patterns of water movement around these ctenophores were studied using fluorescein dye. Bolinopsis infundibulum forages vertically, capturing prey with mucus-covered oral lobes. Species of Ocyropsis forage horizontally and produce a reduced wake, due to the extreme compression of the body and the aboral location of the ctene rows. Prey are trapped by the muscular oral lobes and ingested by the prehensile mouth. In both genera, the auricles are held rigidly, and apparently are used both to reduce the pressure wave as they forage and to startle prey onto the surfaces of the oral lobes. Cestum veneris also forages horizontally, but continually reverses direction. Prey startled by the turbulent wake produced in the previous pass are captured by tentilla that stream over the sides of the body. All three species of Beroe studied swim in a spiral while foraging and produce similar wakes. Prey are ingested by the negative pressure produced by the rapid expansion of the mouth, and with the macrocilia that line the oral portion of the stomodaeum. The escape behavior of species of Bolinopsis, Ocyropsis, and Cestum appears to function primarily to elude nonvisual predators such as Beroe spp. Species of Beroe bend and swim rapidly during the escape response, and will turn themselves inside-out when repeatedly stimulated. The types of prey captured depend in part on an interplay of foraging and feeding mechanisms. 相似文献
11.
Observations of the feeding biology of Meyenaster gelatinosus (Meyen) were made between Horcón and the southern Golfo de Penas, Chile. Of 811 sea stars examined, 436 were feeding on individuals representing 30 prey species. M. gelatinosus preys upon almost all the echinoderms and molluscs in its habitat, yet most of the prey species have extremely effective running escape behaviour in which they eventually release their attachment to the substratum, usually assuring that they will be swept to safety. Many of the molluscs exaggerate this by dorsoventral flattening of their mantles, so that they glide even farther. The echinoid Loxechinus albus has a very effective pedicillariae defense. Even at a distance, prey species usually discern foraging M. gelatinosus from non-foraging individuals, and on several occasions were observed touching M. gelatinosus which were eating conspecifics. Comparisons of the sizes of individual M. gelatinosus and their L. albus prey items showed no correlation; none of the prey species except possibly Concholepas choncholepas and M. gelatinosus itself has a refuge in size from attacking M. gelatinosus. The density of M. gelatinosus in 3 of 4 widely separated study areas where such data were collected was 0.04/m2. The mean radius of M. gelatinosus ranged from 150 to 210 mm in five study areas. 相似文献
12.
13.
We created a Bayesian hierarchical model (BHM) to investigate ecosystem relationships between the physical ecosystem (sea ice extent), a prey measure (krill density), predator behaviors (diving and foraging effort of female Antarctic fur seals, Arctocephalus gazella, with pups) and predator characteristics (mass of maternal fur seals and pups). We collected data on Antarctic fur seals from 1987/1988 to 1994/1995 at Seal Island, Antarctica. The BHM allowed us to link together predators and prey into a model that uses all the data efficiently and accounts for major sources of uncertainty. Based on the literature, we made hypotheses about the relationships in the model, which we compared with the model outcome after fitting the BHM. For each BHM parameter, we calculated the mean of the posterior density and the 95% credible interval. Our model confirmed others' findings that increased sea ice was related to increased krill density. Higher krill density led to reduced dive intensity of maternal fur seals, as measured by dive depth and duration, and to less time spent foraging by maternal fur seals. Heavier maternal fur seals and lower maternal foraging effort resulted in heavier pups at 22 d. No relationship was found between krill density and maternal mass, or between maternal mass and foraging effort on pup growth rates between 22 and 85 days of age. Maternal mass may have reflected environmental conditions prior to the pup provisioning season, rather than summer prey densities. Maternal mass and foraging effort were not related to pup growth rates between 22 and 85 d, possibly indicating that food was not limiting, food sources other than krill were being used, or differences occurred before pups reached age 22 d. 相似文献
14.
Nitrogen balance in marine fish larvae: influence of developmental stage and prey density 总被引:8,自引:0,他引:8
The utilization and fate of nitrogen in larvae of plaice (Pleuronectes platessa), blenny (Blennius pavo) and herring (Clupea harengus), from the stage of first-feeding to metamorphosis, was examined under laboratory conditions. Rates of ammonia excretion, primary amine defaecation, and growth in terms of protein-nitrogen were monitored throughout larval life. Data were used to calculate daily ration, the coefficient of nitrogen utilization (absorption efficiency), and gross and net growth efficiencies. The developmental pattern of nitrogen balance was similar for plaice and blenny larvae. These species showed increasing growth efficiency (k1: 55 to 80%) with decreasing weight-specific waste nitrogen losses with age. Absorption efficiencies. were high (83 to 98%) in plaice and blenny larvae, and tended to increase with development in the former species. Ration relative to body weight decreased with growth in both species. Herring larval development, although at a slower rate than blenny and plaice, appeared normal up to 33 d, after which high mortality occurred. Absorption efficiency in this species tended to decline (83 to 43%) with age, until metabolic costs exceeded the absorbed ration and growth ceased. Artemia sp. nauplii proved a suitable food source for the rearing of plaice and blenny larvae, but this diet may have long-term toxicity or deficiency effects on herring. Availability and density of food affected nitrogen balance in the larvae of all three species. Feeding stimulated the output of wastes in excretion and defaecation by a factor of up to ten times the 12-h non-feeding basal rates. Waste nitrogen output reached a peak some 2 to 3 h after commencement of feeding and returned slowly to the baseline in 5 to 10 h after cessation of feeding. There was an asymptotic increase in ration, ammonia output and growth of larvae as prey density increased. Ration saturated at a higher prey density (>4 prey ml-1) than either growth or excretion rate (1 prey ml-1). Thus the efficiency with which food is absorbed and utilized for growth must eventually decline in response to high prey density. The idea that larval fish are adapted to maximize ingestion and growth rate, rather than optimize growth efficiency and thus to respond to prey occurring in either low density or in occasional patches, is supported by these results. 相似文献
15.
Isabel Mück Sebastian Wacker Lise Cats Myhre Trond Amundsen 《Behavioral ecology and sociobiology》2013,67(4):609-619
The distribution of breeding resources, such as nest sites, can have a pronounced impact on a population by affecting the proportion of individuals that succeed to breed and hence, the variation in reproductive success. Aggregation of important resources can lead to resource monopolisation by a limited number of individuals and thus affect the intensity of sexual selection. In this study, we tested, by contrasting two experimental treatments (dispersed vs. aggregated), how nest distribution affects: (1) mating behaviour, (2) male nest occupation and mating success, and (3) reproductive success and the opportunity for selection. We used the two-spotted goby (Gobiusculus flavescens), a small marine fish with a resource-based mating system, as our model species. When nests were aggregated, a larger proportion of the males behaved aggressively, fewer males succeeded in occupying a nest, fewer males became mated, and those males that mated received fewer eggs from spawning females. These effects resulted in a higher variance in reproductive success and hence, a higher opportunity for selection (I rs ), in the aggregated treatment. We suggest that the results are a direct consequence of males defending a territory around their nest, preventing competitively inferior males from breeding. However, we found no significant selection differentials for body length or condition of males in either treatment. Our results support the hypothesis that aggregation of essential resources like nests promotes resource monopolisation. In species facing highly clumped nesting resources in the wild, monopolisation may negatively impact population productivity but could lead to strong selection on traits that promote male competitive ability. 相似文献
16.
Parasitism is hypothesized to reduce reproductive success in heavily parasitized males because females may preferentially mate with less parasitized males (parasite-mediated sexual selection) or parasites may compromise male competitiveness. In marine systems, this hypothesis is largely unexplored. This paper provides the first confirmed record of a copepod ectoparasite (Caligus buechlerae Hewitt 1964) on the common triplefin (Forsterygion lapillum) and evaluates the hypothesis that males parasitized with C. buechlerae experience lower reproductive success than unparasitized males (as determined by the presence and area of eggs within male nests). We found that 38 % of males we surveyed were infected with at least one C. buechlerae, with a median of two individuals per infected male. About 32 % of males were defending eggs, with 62.5 % of those males infected with at least one parasite. Males of greater total length (TL) were both more likely to be infected and more likely to be defending eggs. However, when statistically accounting for the effects of TL, parasite infection had no effect on the probability of defending eggs, or the average surface area of eggs when present. Positive covariation in fish length, the presence of eggs and parasite infection observed here potentially suggest that the importance of parasitic infection on reproductive success may depend upon the strength of selection for larger male body size. Our study is one of the few studies to investigate the effects of ectoparasites on reproductive success in reef fish and also provides a quantitative measure of infection for a widespread species within New Zealand. 相似文献
17.
Penguins may exhibit plasticity in their diving and foraging behaviors in response to changes in prey availability. Chinstrap
penguins are dependent predators of Antarctic krill in the Scotia Sea region, but krill populations have fluctuated in recent
years. We examined the diet of chinstrap penguins at Livingston Island, South Shetland Islands, in relation to their diving
and foraging behavior using time-depth recorders over six breeding seasons: 2002–2007. When krill were smaller, more chinstrap
penguins consumed fish. In these years, chinstrap penguins often exhibited a shift to deep dives after sundown, and then resumed
a shallower pattern at sunrise. These night dives were unexpectedly deep (up to 110 m) and mean night dive depths sometimes
exceeded those from the daytime. The average size of krill in each year was negatively correlated to mean night dive depths
and the proportion of foraging trips taken overnight. Based on these patterns, we suggest that when krill were small, penguins
increasingly targeted myctophid fish. The average krill size was negatively correlated to the time chinstrap penguins spent
foraging which suggests that foraging on smaller krill and fish incurred a cost: more time was spent at sea foraging. 相似文献
18.
19.
Melissa Emery Thompson Martin N. Muller Richard W. Wrangham 《Behavioral ecology and sociobiology》2014,68(12):1973-1983
Sexual conflict develops when the optimal reproductive strategy for one sex inflicts fitness costs upon the other sex. Among species with intense within-group feeding competition and high costs of reproduction, females are expected to experience reduced foraging efficiency by associating with males, and this may compromise their reproductive ability. Here, we test this hypothesis in chimpanzees, a species with flexible grouping patterns in which female avoidance of large subgroups has been attributed to their relatively high costs of grouping. In an >11-year study of the Kanyawara community of East African chimpanzees (Pan troglodytes schweinfurthii) in the Kibale National Park, Uganda, the availability of sexually receptive females was a key determinant of the number of males in parties. In turn, females experienced significantly lower C-peptide of insulin levels, indicative of reduced energy balance, during periods when they associated with more males. Female associates did not produce the same negative effect. C-peptide levels positively and significantly predicted female ovarian steroid production, indicating that the costs of associating with males can lead to downstream reproductive costs. Therefore, we conclude that Kanyawara chimpanzees exhibit sexual conflict over subgroup formation, with the large groupings that allow males to compete for mating opportunities inflicting energetic and reproductive costs on females. Because association with males is central to female chimpanzees’ anti-infanticide strategy, and males may confer other benefits, we propose that reproductive success in female chimpanzees hinges on a delicate balance between the costs and benefits of associating with male conspecifics. 相似文献
20.
Stefan Garthe Katrin Ludynia Ommo Hüppop Ulrike Kubetzki Juan F. Meraz Robert W. Furness 《Marine Biology》2012,159(9):1907-1915
We investigated migration and wintering of adult northern gannets (Morus bassanus) breeding in east Scotland, North Sea, by deploying geolocation loggers over three winters. The wintering ranges of these birds varied from the North Sea to the Atlantic off West Africa. Flight time was taken as a proxy for migration and foraging effort. Gannets wintering off Africa had higher total flight times during migration than birds wintering further north. Total flight times in different wintering regions were generally low. Birds off West Africa consistently spent < 25 % of daylight hours in flight, but birds further north showed more variable values that may reflect more variable weather or food availability. Winter sea surface temperatures ranged from 9 °C (North Sea) to 16 °C (West Africa). Thermostatic costs in winter as estimated by measuring thermal conductance in carcasses in still air and water were 28 % higher in North Sea than off West Africa. This effect is aggravated by higher thermostatic costs caused by stronger wind chills in the North Sea compared to the conditions off West Africa. Birds wintering close to the UK arrived at the colony on average 12 days earlier than birds wintering off West Africa. We conclude that the net cost-benefit analysis may be similar for all wintering areas investigated. 相似文献