首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Russell FL  Louda SM  Rand TA  Kachman SD 《Ecology》2007,88(2):413-423
Theory predicts that damage by a shared herbivore to a secondary host plant species may either be higher or lower in the vicinity of a preferred host plant species. To evaluate the importance of ecological factors, such as host plant proximity and density, in determining the direction and strength of such herbivore-mediated indirect effects, we quantified oviposition by the exotic weevil Rhinocyllus conicus on the native wavyleaf thistle Cirsium undulatum in midgrass prairie on loam soils in the upper Great Plains, USA. Over three years (2001-2003), the number of eggs laid by R. conicus on C. undulatum always decreased significantly with distance (0-220 m) from a musk thistle (Carduus nutans L.) patch. Neither the level of R. conicus oviposition on C. undulatum nor the strength of the distance effect was predicted by local musk thistle patch density or by local C. undulatum density (<5 m). The results suggest that high R. conicus egg loads on C. undulatum near musk thistle resulted from the native thistle's co-occurrence with the coevolved preferred exotic host plant and not from the weevil's response to local host plant density. Mean egg loads on C. undulatum also were greater at sites with higher R. conicus densities. We conclude that both preferred-plant proximity and shared herbivore density strongly affected the herbivore-mediated indirect interaction, suggesting that such interactions are important pathways by which invasive exotic weeds can indirectly impact native plants.  相似文献   

2.
Following the introduction to a new area (pre-border dispersal), post-border processes determine the success in the establishment of non-indigenous species (NIS). However, little is known on how these post-border processes shape the genetic composition of NIS at regional scales. Here, we analyse genetic variation in introduced populations along impacted coastlines to infer demographic and kinship dynamics at the post-border stage. We used as a model system the ascidian species Microcosmus squamiger that has been introduced worldwide. This species can colonize and grow fast on man-made artificial structures, impacting activities such as mariculture. However, it can also establish itself on natural substrates, thus altering natural communities and becoming an ecological problem. We genotyped 302 individuals from eight populations established on natural and artificial substrates in the north-western Mediterranean Sea, using six microsatellite loci. We then compared the resulting genotypes with those found within the native range of the species. We found high levels of genetic diversity and allelic richness in all populations, with an overall deficit of heterozygotes. Autocorrelation analyses showed that there was no within-population genetic structure (at a scale of tens of metres); likewise, no significant differentiation in pairwise comparisons between populations (tens of kilometres apart) and no isolation-by-distance pattern was found. The results suggest that M. squamiger has a natural capacity for high dispersal from one patch of hard substrate to another and no differences whatsoever could be substantiated between natural and artificial substrates. Interestingly, two groups of genetically differentiated individuals were detected that were associated with the two ancestral source areas of the worldwide expansion of the species. Individual assignment tests showed the coexistence of individuals of these two clusters in all populations but with little interbreeding among them as the frequency of admixed individuals was only 15 %. The mechanism responsible for maintaining these genetic pools unmixed is unknown, but it does not appear to compromise post-border colonization of introduced populations.  相似文献   

3.
Chemical defenses are thought to contribute to the invasion success and impacts of many introduced plants; however, for most of these species, little is known about these compounds and how they vary in natural environments. Plant allelochemical concentrations may be affected by a variety of abiotic and biotic factors, including soil nutrients and herbivores. Moreover, such quantitative variation is likely to play an important role in species interactions involving these invasive plants. The purpose of this study was to examine patterns of variation in iridoid glycoside concentrations of the invasive plant Linaria dalmatica (Plantaginaceae). We conducted a greenhouse experiment to investigate the effect of soil nitrogen availability on iridoid glycoside concentrations. Results from this experiment showed that plant iridoid glycoside concentrations decreased with increased nitrogen availability. Additionally, plants were collected from multiple field sites in order to characterize the influence of population, soil nitrogen availability, and herbivore attack on iridoid glycoside variation. Results from field studies indicated that plants demonstrated considerable seasonal variation, as well as variation within and among populations, with iridoid glycoside concentrations ranging from approximately 1 to 15% dry weight. The relationship between soil nitrogen and plant iridoid glycosides varied among populations, with a strong negative correlation in one population, a marginally significant negative relationship in a second population, and no relationship in the remaining two populations. Additionally, we found a negative relationship between iridoid glycoside concentrations and plant injury by an introduced biocontrol agent, the stem-mining weevil Mecinus janthinus (Cucurlionidae). These results show that plant allelochemical concentrations can vary widely in natural environments and suggest that levels of plant defense may be reduced by increased soil nitrogen availability and herbivore attack in this invasive plant species.  相似文献   

4.
Caplat P  Nathan R  Buckley YM 《Ecology》2012,93(2):368-377
Little is known about the relative importance of mechanistic drivers of plant spread, particularly when long-distance dispersal (LDD) events occur. Most methods to date approach LDD phenomenologically, and all mechanistic models, with one exception, have been implemented through simulation. Furthermore, the few recent mechanistically derived spread models have examined the relative role of different dispersal parameters using simulations, and a formal analytical approach has not yet been implemented. Here we incorporate an analytical mechanistic wind dispersal model (WALD) into a demographic matrix model within an analytical integrodifference equation spread model. We carry out analytical perturbation analysis on the combined model to determine the relative effects of dispersal and demographic traits and wind statistics on the spread of an invasive tree. Models are parameterized using data collected in situ and tested using independent data on historical spread. Predicted spread rates and direction match well the two historical phases of observed spread. Seed terminal velocity has the greatest potential influence on spread rate, and three wind properties (turbulence coefficient, mean horizontal wind speed, and standard deviation of vertical wind speed) are also important. Fecundity has marginal importance for spread rate, but juvenile survival and establishment are consistently important. This coupled empirical/theoretical framework enables prediction of plant spread rate and direction using fundamental dispersal and demographic parameters and identifies the traits and environmental conditions that facilitate spread. The development of an analytical perturbation analysis for a mechanistic spread model will enable multispecies comparative studies to be easily implemented in the future.  相似文献   

5.
Summary We use a multiallelic regression and jack-knife technique to estimate relatedness and its confidence limits in a sample of 117 nests of the Australian arid zone ant Rhytidoponera mayri, using the genotypes at a prolifically-polymorphic amylase locus. Relatedness between workers from the same nest is low, whether calculated with respect to the complete sample of nests (b=0.121<0.158<0.195), or by restricting the analysis to those nests bordering a cell in a Gabriel-connectedness graph (b=0.101<0.126<0.151). Relatedness between workers of neighboring nests was determined for nearest-neighbors (b=0.021<0.054<0.087), and for nests connected in the Gabriel network (b=0.018<0.036<0.054). Relatedness is thus low but significant at both within- and between-nest levels, as is consistent with a life history involving multiple egg-layers and colony foundation via fission. Estimating relatedness for the different alleles separately yields some significant differences between alleles. We also tested for geographic substructuring using autocorrelation analysis of nine alleles separately and the factor scores for the first two principal components of all the allele frequencies: six of the eleven patterns tested differed significantly from randomness at the 95% level.  相似文献   

6.
Restoration of habitats impacted by invasive plants is becoming an increasingly important tool in the management of native biodiversity, though most studies do not go beyond monitoring the abundance of particular taxonomic groups, such as the return of native vegetation. Yet, the reestablishment of trophic interactions among organisms in restored habitats is equally important if we are to monitor and understand how ecosystems recover. This study examined whether food web interactions among arthropods (as inferred by abundance of naturally occurring stable isotopes of C [delta13C] and N [delta15N]) were reestablished in the restoration of a coastal Spartina alterniflora salt marsh that had been invaded by Phragmites australis. From patterns of C and N stable isotopes we infer that trophic interactions among arthropods in the native salt marsh habitats are characterized by reliance on the dominant marsh plant Spartina as a basal resource. Herbivores such as delphacid planthoppers and mirid bugs have isotope signatures characteristic of Spartina, and predatory arthropods such as dolicopodid flies and spiders likewise have delta13C and delta15N signatures typical of Spartina-derived resources (approximately -13 per thousand and 10 per thousand, respectively). Stable isotope patterns also suggest that the invasion of Phragmites into salt marshes and displacement of Spartina significantly alter arthropod food web interactions. Arthropods in Phragmites-dominated sites have delta13C isotope values between -18 per thousand and -20 per thousand, suggesting reliance on detritus and/or benthic microalgae as basal resources and not on Phragmites, which has a delta13C approximately -26 per thousand. Since most Phragmites herbivores are either feeding internally or are rare transients from nearby Spartina, these resources do not provide significant prey resources for other arthropod consumers. Rather, predator isotope signatures in the invaded habitats indicate dependence on detritus/algae as basal resources instead of the dominant vegetation. The reestablishment of Spartina after removal of Phragmites, however, not only returned species assemblages typical of reference (uninvaded) Spartina, but stable isotope signatures suggest that the trophic interactions among the arthropods were also similar in reestablished habitats. Specifically, both herbivores and predators showed characteristic Spartina signatures, suggesting the return of the original grazer-based food web structure in the restored habitats.  相似文献   

7.
外来入侵杂草空心莲子草对植物生物多样性的影响   总被引:2,自引:0,他引:2  
利用样方法调查了南京市空心莲子草(Alternantheraphiloxeroides)生长生境中杂草的种类和分布。结果表明,南京市秋季空心莲子草分布样点有杂草30科101种,其中以禾本科、菊科、蓼科居多。主成分分析表明,影响杂草分布的主要因素是土壤水分条件和人为干扰强度。经Q型分析, 24个样点可划分为3个聚类群:聚类群Ⅰ包括的样点均分布在路边和田边开阔地以及小河、小沟和湖的岸边,以马唐、狗尾草和牛筋草为优势种;聚类群Ⅱ的样点都是农田隔离带如田埂以及农田中的沟壑,以波斯婆婆纳、碎米莎草、野塘蒿和铁苋菜为优势种;聚类群Ⅲ的样点以菜地和果园为主,以马唐、香附子、马齿苋和黄鹌菜为优势种。分析了空心莲子草重要值与物种丰富度之间的关系,当空心莲子草重要值大于1. 5时,样方物种丰富度随重要值的增加而减小。2者之间具有显著相关性,表明空心莲子草的入侵对生物多样性有不利影响。  相似文献   

8.
Two factors that influence age at onset of foraging in honeybees are juvenile hormone (JH) and colony age demography (older bees inhibit behavioral development of younger bees). We tested the hypothesis that genetic variation among bees for these factors influences genetic variation in behavioral development. Pairs of colonies showing genetic differences in rates of behavioral development were identified in a screening experiment and bees from these colonies were used for physiological and behavioral assays. Six pairs were assayed, three with European bees only and three with both European and Africanized bees. There was genetic variation for the following four components: (1) production of JH in four pairs (experiment 1); (2) sensitivity to JH in three pairs (experiment 2); (3) sensitivity to social inhibition in three pairs (experiment 3), and (4) potency of social inhibition in four pairs (experiment 4). Cross-fostering assays (experiment 5), which allowed all four components to be evaluated simultaneously, revealed genetic variation for production of JH, sensitivity to JH, or sensitivity to social inhibition in five of six pairs, and potency of social inhibition in five of six pairs. There was often evidence for genotypic differences in more than one component, and no consistent pattern of association among any of the components. Africanized bees had faster rates of behavioral development than European bees, but there were no racial differences in patterns of variation among the four components. These results indicate that there are at least several, apparently distinct, physiological processes associated with JH and colony age demography upon which natural selection can act to alter the rate of behavioral development in honeybees. Received: 8 December 1998 / Received in revised form: 29 July 1999 / Accepted: 8 August 1999  相似文献   

9.
Plant-soil feedbacks have been implicated in several successful plant invasions. However, simple identification of a feedback alone may not be enough to establish feedbacks as a mechanism behind plant invasion. I suggest that the relationship between soil community density and plant growth is an important unknown that strongly influences the impact of plant-soil feedbacks. I developed a mathematical model of two-plant species competition with plant-soil feedbacks. Each plant species obligately generates its own soil community. Each soil community then influences both plant species’ growth. The model allows for every possible combination of positive and negative effects of the soil community on plant growth. I model the relationship between soil community density and plant growth with non-linear functional responses. I use a range of plant competitive abilities and feedback scenarios from the literature to explore how different functional responses influence the outcome of plant competition. Sensitivity analysis of the model reveals that altering the relationship between feedback strength and soil community development can reverse the outcome of plant competition. Analysis of the model also shows how the importance of different feedback scenarios depends on the strength of plant competition.  相似文献   

10.
Improved understanding of the spatial dynamics of invasive plant species may lead to more effective land management and reduced future invasion. Here, we identified the spatial extents of nonnative cheatgrass (Bromus tectorum) in the north central Great Basin using remotely sensed data from Landsat MSS, TM, and ETM+. We compared cheatgrass extents in 1973 and 2001 to six spatially explicit landscape variables: elevation, aspect, hydrographic channels, cultivation, roads, and power lines. In 2001, Cheatgrass was 10% more likely to be found in elevation ranges from 1400 to 1700 m (although the data suggest a preferential invasion into lower elevations by 2001), 6% more likely on west and northwest facing slopes, and 3% more likely within hydrographic channels. Over this time period, cheatgrass expansion was also closely linked to proximity to land use. In 2001, cheatgrass was 20% more likely to be found within 3 km of cultivation, 13% more likely to be found within 700 m of a road, and 15% more likely to be found within 1 km of a power line. Finally, in 2001 cheatgrass was 26% more likely to be present within 150 m of areas occupied by cheatgrass in 1973. Using these relationships, we created a risk map of future cheatgrass invasion that may aid land management. These results highlight the importance of including land use variables and the extents of current plant invasion in predictions of future risk.  相似文献   

11.
Terrestrial ecosystems consist of mutually dependent producer and decomposer subsystems, but not much is known on how their interactions are modified by plant diversity and elevated atmospheric CO2 concentrations. Factorially manipulating grassland plant species diversity and atmospheric CO2 concentrations for five years, we tested whether high diversity or elevated CO2 sustain larger or more active soil communities, affect soil aggregation, water dynamics, or nutrient cycling, and whether plant diversity and elevated CO2 interact. Nitrogen (N) and phosphorus (P) pools, symbiotic N2 fixation, plant litter quality, soil moisture, soil physical structure, soil nematode, collembola and acari communities, soil microbial biomass and microflora community structure (phospholipid fatty acid [PLFA] profiles), soil enzyme activities, and rates of C fluxes to soils were measured. No increases in soil C fluxes or the biomass, number, or activity of soil organisms were detected at high plant diversity; soil H2O and aggregation remained unaltered. Elevated CO2 affected the ecosystem primarily by improving plant and soil water status by reducing leaf conductance, whereas changes in C cycling appeared to be of subordinate importance. Slowed-down soil drying cycles resulted in lower soil aggregation under elevated CO2. Collembola benefited from extra soil moisture under elevated CO2, whereas other faunal groups did not respond. Diversity effects and interactions with elevated CO2 may have been absent because soil responses were mainly driven by community-level processes such as rates of organic C input and water use; these drivers were not changed by plant diversity manipulations, possibly because our species diversity gradient did not extend below five species and because functional type composition remained unaltered. Our findings demonstrate that global change can affect soil aggregation, and we advocate that soil aggregation should be considered as a dynamic property that may respond to environmental changes and feed back on other ecosystem functions.  相似文献   

12.
Brooks CP  Ervin GN  Varone L  Logarzo GA 《Ecology》2012,93(2):402-410
Environmental niche models (ENMs) have gained enormous popularity as tools to investigate potential changes in species distributions resulting from climate change and species introductions. Despite recognition that species interactions can influence the dynamics of invasion spread, most implementations of ENMs focus on abiotic factors as the sole predictors of potential range limits. Implicit in this approach is the assumption that biotic interactions are relatively unimportant, either because of scaling issues, or because fundamental and realized niches are equivalent in a species' native range. When species are introduced into exotic landscapes, changes in biotic interactions relative to the native range can lead to occupation of different regions of niche space and apparent shifts in physiological tolerances. We use an escaped biological control organism, Cactoblastis cactorum (Berg.), to assess the role of the environmental envelope as compared with patterns of host-herbivore associations based on collections made in the native range. Because all nonnative populations are derived from a single C. cactorum ecotype, we hypothesize that biotic interactions associated with this ecotype are driving the species' invasion dynamics. Environmental niche models constructed from known native populations perform poorly in predicting nonnative distributions of this species, except where there is an overlap in niche space. In contrast, genetic isolation in the native range is concordant with the observed pattern of host use, and strong host association has been noted in nonnative landscapes. Our results support the hypothesis that the apparent shift in niche space from the native to the exotic ranges results from a shift in biotic interactions, and demonstrate the importance of considering biotic interactions in assessing the risk of future spread for species whose native range is highly constrained by biotic interactions.  相似文献   

13.
Geographic variation in a predator-induced defense and its genetic basis   总被引:1,自引:0,他引:1  
Kishida O  Trussell GC  Nishimura K 《Ecology》2007,88(8):1948-1954
Predator-induced morphological defenses are a well-known form of phenotypic plasticity, but we continue to have a limited understanding of geographic variation in these responses and its genetic basis. Here we examine genetic variation and geographic differentiation in the inducible defenses of tadpoles (Rana pirica) in response to predatory salamander larvae (Hynobius retardatus). To do so, we crossed male and female frogs from a "mainland" Japanese island having predaceous salamanders and a more isolated island not having predaceous salamanders and raised resulting offspring in the presence and absence of H. retardatus. Mainland tadpoles exhibited a higher capacity to express the inducible morphology (a more bulgy body) than those from the predator-free island, and expression of the bulgy morph in mainland-island hybrids produced phenotypes that were intermediate to those produced by pure crosses. In addition, parental sex had no effect on expression of the bulgy morph. Our results support the hypothesis that geographic variation in inducible defenses is linked to the additive effects of autosomal alleles that are shaped by differences in historical exposure to the inducing predator.  相似文献   

14.
Global environmental changes are altering interactions among plant species, sometimes favoring invasive species. Here, we examine how a suite of five environmental factors, singly and in combination, can affect the success of a highly invasive plant. We introduced Centaurea solstitialis L. (yellow starthistle), which is considered by many to be California's most troublesome wildland weed, to grassland plots in the San Francisco Bay Area. These plots experienced ambient or elevated levels of warming, atmospheric CO2, precipitation, and nitrate deposition, and an accidental fire in the previous year created an additional treatment. Centaurea grew more than six times larger in response to elevated CO2, and, outside of the burned area, grew more than three times larger in response to nitrate deposition. In contrast, resident plants in the community responded less strongly (or did not respond) to these treatments. Interactive effects among treatments were rarely significant. Results from a parallel mesocosm experiment, while less dramatic, supported the pattern of results observed in the field. Taken together, our results suggest that ongoing environmental changes may dramatically increase Centaurea's prevalence in western North America.  相似文献   

15.
Knowledge of total and bioavailable metal contents in soil is important for regional risk assessment and management. The main objective of the present study was to analyse the concentrations of metals in soils in two contrasting mining regions (Sudbury in Canada and Lubumbashi in DR-Congo). Genetic variation of plant populations was investigated to assess the potential impact of metal contamination on forest sustainability. The levels of copper, cobalt, zinc, arsenic, and lead were significantly higher (up to 200-fold) in mining sites in the Lubumbashi compared to the most highly contaminated Sudbury sites. The nickel content in soil samples from Lubumbashi was much lower compared to Sudbury region samples. Only 3.5% and 4 % of total copper and nickel, respectively, were phytoavailable, with values of 6%, 5.7%, 3.6%, and 5.4% for cobalt, magnesium, manganese, and zinc, respectively. There were significant positive correlations between total metal and phytoavailable metal concentrations for copper (r=0.99), nickel (r=0.86), cobalt (r=0.72), strontium (r=0.71), and zinc (r=0.66). Although genetic variation was high in Picea glauca populations from the Sudbury region, no association was found between metal contamination levels and genetic variation within and among the P. glauca populations.  相似文献   

16.
外来入侵植物簕仔树若干形态和生理生态特性   总被引:1,自引:0,他引:1  
簕仔树Mimosa bimucronata在广东为外来入侵种,对其种子形态及生理、叶片生理生态特性进行测定,并与原产地(南美洲)和3种本地(中国广东)植物的相关指标对比,以了解其生态适应性。结果表明:种子长4.29mm,宽3.30mm,大小、含水量(6.23%~8.23%)与原产地的无显著差异;可溶性糖、氨基酸和蛋白质含量分别为32.00、8131.06和2487.04μg·g-1(以干质量计)。活种子比例98.89%~100.00%,萌发率仅32.80%;相对电导率5.35%~11.66%。叶片绿色度29.39,但叶绿素b含量高;对比本地植物,在低光照高湿度下,簕仔树净光合速率(以CO2计)1.339μmol·m-2·s-1低,呼吸速率(以CO2计)1.828μmol·m-2·s-1高,在测定时间内未检测出其蒸腾速率;生理生态指标的表现与阳性植物木荷Schima superba类似,而明显与耐荫植物阴香Cinnamomum burmannii幼苗和九节Psychotria rubra不同。利用其阳性植物特征,可进行遮蔽以减轻潜在的生态危害。  相似文献   

17.
The gonad index in the deposit-feeding asteroid Ctenodiscus crispatus (Retzius) in the Gulf of Maine (USA) is seasonally less variable than in any other sea star, ranging from 2.99 to 4.98% of dry body weight in females and from 2.28 to 3.42% in males, and varies in concert with, rather than reciprocal to, the pyloric caecum index. Biochemical composition and, hence, caloric content, of the gonads also show little seasonal change, suggesting that reproduction is aseasonal and continuous in this population. Oocyte development is asynchronous, all females having a full size range of oocytes (from less than 30 m to greater than 400 m diameter) throughout the year. Seasonally determined size-frequency distributions of juveniles, oocyte cytology and size-frequency distributions, responsiveness of adult females to 1-methyladenine, and oxygen uptake rates indicate that variations in reproductive intensity are superimposed on continuous reproduction, and seem related to changes in phytoplankton production rather than to temperature. The rich neutral lipid content (ca. 50% of total lipid) and large egg size (>400 m) in the ovaries suggest that development is direct. The population is extremely variable genetically, polymorphism among 13 enzyme-coding genes being 77% and average heterozygosity being 0.174. The reproductive pattern and genetic variation in the eurybathic C. crispatus are similar to those in deep-sea echinoderms. This may be related to the constancy of the population's detrital food source, to small-scale heterogeneity of its physical environment, and to low individual vagility.  相似文献   

18.
Capers RS  Selsky R  Bugbee GJ  White JC 《Ecology》2007,88(12):3135-3143
Invasive species richness often is negatively correlated with native species richness at the small spatial scale of sampling plots, but positively correlated in larger areas. The pattern at small scales has been interpreted as evidence that native plants can competitively exclude invasive species. Large-scale patterns have been understood to result from environmental heterogeneity, among other causes. We investigated species richness patterns among submerged and floating-leaved aquatic plants (87 native species and eight invasives) in 103 temperate lakes in Connecticut (northeastern USA) and found neither a consistently negative relationship at small (3-m2) scales, nor a positive relationship at large scales. Native species richness at sampling locations was uncorrelated with invasive species richness in 37 of the 60 lakes where invasive plants occurred; richness was negatively correlated in 16 lakes and positively correlated in seven. No correlation between native and invasive species richness was found at larger spatial scales (whole lakes and counties). Increases in richness with area were uncorrelated with abiotic heterogeneity. Logistic regression showed that the probability of occurrence of five invasive species increased in sampling locations (3 m2, n = 2980 samples) where native plants occurred, indicating that native plant species richness provided no resistance against invasion. However, the probability of three invasive species' occurrence declined as native plant density increased, indicating that density, if not species richness, provided some resistance with these species. Density had no effect on occurrence of three other invasive species. Based on these results, native species may resist invasion at small spatial scales only in communities where density is high (i.e., in communities where competition among individuals contributes to community structure). Most hydrophyte communities, however, appear to be maintained in a nonequilibrial condition by stress and/or disturbance. Therefore, most aquatic plant communities in temperate lakes are likely to be vulnerable to invasion.  相似文献   

19.
Geographic populations of the anemonefish Amphiprion clarkii (Bennett) from 6 widely separated locations off the coast of southern Japan are morphologically different, exhibiting (1) latitudinal clinal patterns in color pattern and meristics and (2) degrees of genetic differentiation. Electrophoretic examination of 7 polymorphic loci (95% level) among 6 populations collected between July 1979 and January 1980 revealed an average genetic distance value of 0.008. Significance was demonstrated for 39 out of 105 (37%) tests of heterogeneity. Averaged over the 6 populations, the percentage of polymorphic loci ( 0.95) was 24.6% and the proportion of heterozygous loci per individual ( ) was 0.0613. The results indicate that genetic clines are absent and suggest that the morphological variation may not be genetic. Relative isolation of genetic populations may be maintained by (1) localized larval dispersal resulting from a relatively short larval stage, and (2) current gyres tending to trap larvae, increasing the return of juveniles to their adult coastal habitat. Morphological clines may be due to clines in ecological parameters related to latitude.Contribution No. 39 of the Tatsuo Tanaka Memorial Biological Station  相似文献   

20.
密码子的使用频率分布能够反映一定的生物特性,因而可作为一种基因签名。本文使用CGR方法来研究外来入侵物种不同组织序列的基因签名及遗传多样性聚类分析,首先得出了刺花莲子草(Alternanthera pungens),紫茎泽兰(Ageratina adenophora),水葫芦(Eichhornia crassipes),微甘菊(Mikania micrantha),土荆芥(Chenopodium ambrosioides),一枝黄花(Solidago canadensis)等6种外来入侵植物的31条序列核苷酸字串长k=1到k=6的情况,并选取k=3,即基因序列的密码子,作为生物特性的一个重要表达。并且构造序列间的CGR欧式距离,进而对外来入侵植物序列遗传多样性进行了聚类分析。通过对所获得的6种外来入侵植物的31条序列的基因签名,得出如下结果:CGR是一种简便且计算量小的方法,且基于CGR方法的基因签名,具有典型的生物特性;入侵植物的基因序列在密码子的使用上是非均衡的,且物种亲缘关系近的,则基因签名相似越高;而且基因签名也揭示出了密码子的第三位碱基偏好使用碱基T的现象,与一般物种密码子第三位碱基偏好G/C情况有强烈反差。此外,从获得的6个物种的31条序列聚类谱系图可以直观看出,入侵植物间存在着一定的亲缘关系,遗传多样性较丰富。由于我们所建立的基于CGR方法的基因签名,不仅能够反映植物特性和进化关系,而且能揭示序列中密码子和碱基的偏好使用情况,因而该方法有利于对外来入侵物种的遗传多样性分析、风险评估及预防控制等提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号