首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Influence of organic acids on the transport of heavy metals in soil   总被引:9,自引:0,他引:9  
Schwab AP  Zhu DS  Banks MK 《Chemosphere》2008,72(6):986-994
Vegetation historically has been an important part of reclamation of sites contaminated with metals, whether the objective was to stabilize the metals or remove them through phytoremediation. Understanding the impact of organic acids typically found in the rhizosphere would contribute to our knowledge of the impact of plants in contaminated environments. Heavy metal transport in soils in the presence of simple organic acids was assessed in two laboratory studies. In the first study, thin layer chromatography (TLC) was used to investigate Zn, Cd, and Pb movement in a sandy loam soil as affected by soluble organic acids in the rhizosphere. Many of these organic acids enhanced heavy metal movement. For organic acid concentrations of 10mM, citric acid had the highest R(f) values (frontal distance moved by metal divided by frontal distance moved by the solution) for Zn, followed by malic, tartaric, fumaric, and glutaric acids. Citric acid also has the highest R(f) value for Cd movement followed by fumaric acid. Citric acid and tartaric acid enhanced Pb transport to the greatest degree. For most organic acids studied, R(f) values followed the trend Zn>Cd>Pb. Citric acid (10mM) increased R(f) values of Zn and Cd by approximately three times relative to water. In the second study, small soil columns were used to test the impact of simple organic acids on Zn, Cd, and Pb leaching in soils. Citric acid greatly enhanced Zn and Cd movement in soils but had little influence on Pb movement. The Zn and Cd in the effluents from columns treated with 10mM citric acid attained influent metal concentrations by the end of the experiment, but effluent metal concentrations were much less than influent concentrations for citrate <10mM. Exchangeable Zn in the soil columns was about 40% of total Zn, and approximately 80% total Cd was in exchangeable form. Nearly all of the Pb retained by the soil columns was exchangeable.  相似文献   

2.
Application of poultry litter to cropland may increase metal mobility, because the soluble organic ligands in poultry litter can form water-soluble complexes with metals. In this study, one uncontaminated soil and two metal-contaminated soils were sampled. A portion of the uncontaminated soil was amended with Zn, Pb, and Cd at rates of 400, 200, and 8 mg kg(-1), respectively. Packed soil columns were leached with H2O, EDTA, CaCl2, and poultry litter extract (PLE) solutions separately. No leaching of Zn, Cd, and Pb with the PLE was found in the uncontaminated soil. The retention of PLE-borne Zn indicated the potential for Zn accumulation in the soil. A large portion of the metals was leached from the metal-amended soil, and EDTA solubilized more Zn, Cd, and Pb than CaCl2 and PLE. In the metal-contaminated soils, the leaching of Zn and Cd with PLE was consistently larger than that for CaCl2, indicating that these metals were mobilized by organic ligands. The PLE did not mobilize Pb in these soils. The utilization of poultry litter in metal-contaminated soils might accelerate the movement of Zn and Cd in soil profiles.  相似文献   

3.
The aim of this study is to test the stabilisation of metals in contaminated soils via the formation of low-solubility metal phosphates. Bone apatite, in the form of commercially available bone meal, was tested as a phosphate source on a mine waste contaminated made-ground with high levels of Pb, Zn and Cd. Triplicate leaching columns were set up at bone meal to soil ratios of 1:25 and 1:10, in addition to unamended controls, and were run for 18 months. The columns were irrigated daily with a synthetic rain solution at pH of 2, 3, and 4.4. After 100 days, the leachate Pb, Zn and Cd concentrations of all amended columns were significantly reduced. For 1:10 treatments, release of these metals was suppressed throughout the trial. For 1:25 treatments, Zn and Cd concentrations in the leachates began to increase after 300 days. DTPA and water extractions showed that Pb and Cd were more strongly held in the amended soils. This study concludes that the complexity of soil processes and the small quantities of metals sequestered precluded determination of a metal immobilisation mechanism.  相似文献   

4.
The chemical and physical processes involved in the retention of 10(-2)M Zn, Pb and Cd in a calcareous medium were studied under saturated dynamic (column) and static (batch) conditions. Retention in columns decreased in order: Pb>Cd approximately Zn. In the batch experiments, the same order was observed for a contact time of less than 40h and over, Pb>Cd>Zn. Stronger Pb retention is in accordance with the lower solubility of Pb carbonates. However, the equality of retained Zn and Cd does not fit the solubility constants of carbonated solids. SEM analysis revealed that heavy metals and calcareous particles are associated. Pb precipitated as individualized Zn-Cd-Ca- free carbonated crystallites. All the heavy metals were also found to be associated with calcareous particles, without any change in their porosity, pointing to a surface/lattice diffusion-controlled substitution process. Zn and Cd were always found in concomitancy, though Pb fixed separately at the particle circumferences. The Phreeqc 2.12 interactive code was used to model experimental data on the following basis: flow fractionation in the columns, precipitation of Pb as cerrusite linked to kinetically controlled calcite dissolution, and heavy metal sorption onto proton exchanging sites (presumably surface complexation onto a calcite surface). This model simulates exchanges of metals with surface protons, pH buffering and the prevention of early Zn and Cd precipitation. Both modeling and SEM analysis show a probable significant decrease of calcite dissolution along with its contamination with metals.  相似文献   

5.
The application of poultry litter to metal-contaminated soils may influence metal leaching and distribution of metals among soil fractions. Soil columns (one uncontaminated control, one metal-amended, and two metal-contaminated soils) were leached with H2O, CaCl2, EDTA, and poultry litter extract (PLE) solutions. After leaching, the soil samples in the columns were sequentially extracted for water soluble (WS), exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO) and residual (RES) fractions. The OM fraction showed high retention for Zn from the PLE. The EDTA redistributed Zn, Cd and Pb from the EXC, OM and MNO fractions to the WS fraction. The PLE usually solubilized more Zn and Cd from the EXC fraction than CaCl2. Neither PLE nor CaCl2 mobilized Pb. The application of poultry litter on metal-contaminated soils might cause Zn and Cd redistribution from the EXC to the WS fraction and enhance metal mobility.  相似文献   

6.
巢湖表层沉积物中重金属的分布特征及其污染评价   总被引:14,自引:1,他引:13  
以巢湖表层沉积物为研究对象,利用BCR连续提取法研究了沉积物中Cr、Co、Ni、Cu、Cd、Zn、V和Pb等8种重金属元素的分布特征,同时运用潜在风险指数法和地累积指数法综合评价了巢湖沉积物中重金属的生态风险。结果表明,巢湖沉积物中的重金属含量在空间上表现出东西高、中间低的分布特征。巢湖表层沉积物中Cr、Co、Ni、V和Cu 5种重金属都主要以残渣态为主,Zn和Cd主要以弱酸提取态为主,Pb以可还原态为主,同时,Co和Cu 2种元素的可交换态及可还原态含量占有较高比例,具有潜在危害性。相关性分析显示,Cr、Cu、Pb、Ni、Zn和Cd 6种重金属元素的来源和分布可能具有相似性,Co和V 2种重金属元素具有相似的地球化学行为且其主要来源可能与其他几种重金属不同。潜在生态风险指数评价结果表明,巢湖表层沉积物中8种重金属元素构成的生态危害顺序为:Cd>Pb>Co>Cu>Ni>Zn>V>Cr,Cd具有高的生态危害等级,其他7种重金属元素均为低生态危害等级。地累积指数法评价结果表明:巢湖沉积物重金属元素的富集程度为Cd>Zn>Pb>Co>Cu>V>Ni>Cr,Cr属于清洁级别,Co、Cu、V和Ni处于轻度污染水平,Zn和Pb处于偏中度污染,Cd达到了重污染水平。  相似文献   

7.
Earthworms (Lumbricus rebellus and Dendrodrilus rubidus) were sampled from one uncontaminated and fifteen metal-contaminated sites. Significant positive correlations were found between the earthworm and 'total' (conc. nitric acid-extractable) soil Cd, Cu, Pb and Zn concentrations (data log1) transformed). The relationships were linear, and the accumulation patterns for both species were similar when a single metal was considered, even though there were species difference in mean metal concentrations. Generally, the earthworm Cd concentration exceeded that of the soil; by contrast, the worm Pb concentration was lower than the soil Pb concentration in all but one (acidic, low soil Ca) site. Our observations suggest that Cu and Zn accumulation may be physiologically regulated by both species. Total-soil Cd explained 82-86% of the variability (V2) in earthworm Cd concentration; 52-58% of worm Pb and worm Zn concentrations were explained by the total-soil concentrations of the respective metals. Total-soil Cu explained only 11-32% of the worm Cu concentration. The effect of soil pH, total Ca concentration, cation-exchange capacity (CEC) and organic carbon on metal accumulation by L. rubellus and D. rubidus was investigated by multiple regression analysis. Soil pH (coupled with CEC) and soil Ca had a major influence on Pb accumulation (V2 of worm Pb increased to 77-83%), and there was some evidence that Cd accumulation may be suppressed in extremely organic soils. The edaphic factors investigated had no effect on Cu or Zn accumulation by earthworms. In the context of biomonitoring, it is proposed that earthworms have a potential in a dual role: (1) as 'quantitative' monitors of total-soil metal concentrations (as shown for Cd); and (2) as estimators of 'ecologically significant' soil metal, integrating the effects of edaphic factors (as shown for Pb).  相似文献   

8.
The concentrations of metals in the buried marine sediment and groundwater were differently affected by land reclamation. Nine metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in sediment and coastal groundwater from reclamation areas in Shenzhen were examined. The gradually decreased concentrations (V, Cr, Mn, Ni, Cu, Zn) in sediment and relatively higher concentrations (V, Cr, Mn, Co, Ni, Cu and Cd) in groundwater within reclamation areas were observed. The increase of V, Cr, Mn, Ni, Cu and Cd concentrations in groundwater within reclamation areas subsequently after land reclamation should be resulted from the mobilization of these metals accumulated in the sediment. These metals appear to be easily mobilized from solid phase to solution phase after reclamation. The physico-chemical changes such as reduction in pH and salinity in water environment induced by land reclamation appear to be responsible for metal mobility in the sediment-groundwater system.  相似文献   

9.
In regions where phytoremediation is carried out, brackish water must often be used. However, no information exists concerning the consequences of saline-water irrigation on the mobility of heavy metals in sludge applied to soil during phytoremediation. The purpose of this experiment was to determine the effect of NaCl irrigation on displacement of seven heavy metals in sludge (Cd, Cu, Fe, Mn, Ni, Pb, Zn) applied to the surface of soil columns containing barley plants. Half the columns received NaCl irrigation (10,000mg L(-1)) and half the columns received tap-water irrigation. Half the columns were treated with the chelating agent EDTA. With no EDTA, irrigation with the NaCl solution increased the concentrations of Cd, Fe, Mn, and Pb in the drainage water above drinking-water standards. Irrigation of sludge farms with brackish water is not recommended, because saline water increased the mobility of the heavy metals and they polluted the drainage water.  相似文献   

10.
Miscible-displacement experiments were conducted to compare the effects of aqueous soil solutions with ethyl alcohol, ethylene glycol, diethylene glycol, and triethylene glycol on the movement of metals through soils. Aqueous or alcohol solutions containing 1 mM each Cd, Ni, and Zn and 5 mM Ca were perfused through columns containing River Sand, Canelo loam (Canelo 1) or Mohave sandy clay loam (Mohave scl) until effluent metal concentrations (C) equaled influent concentrations (C0) or CC0−1 = 1. In general, the order of sorption was Zn > Ni > Cd in aqueous-perfused columns, while in alcohol-perfused columns sorption of Ni Cd ≥ Zn. In comparison to aqueous solutions, alcohols reduced total metal sorption by at least 25%. Metal sorption was best correlated to cation exchange capacity of the soil, sorption of metals being greatest in the Mohave scl and least in the River Sand. After CC0−1 = 1 was reached, columns were leached with deionized water. While leaching did not affect the sorption of metals in columns which had been perfused with aqueous solvents, sorption behavior of metals changed significantly in columns which had been perfused with alcohol solvents. Leaching caused desorption of 5 to 30% of the sorbed Ni. In general, Cd was desorbed (up to 45%) from the soils tested. The exceptions were River Sand columns perfused with diethylene and triethylene glycol in which additional Cd was sorbed to the soil from the soil solution. Additional Zn was sorbed in all columns tested with the exception of the Canelo 1 column perfused with ethyl alcohol.  相似文献   

11.
Seven sediment cores (60-80 cm) were collected at Chiricahueto marsh, a salt marsh influenced by agrochemical, domestic and industrial effluents. The concentrations of Ag, Al, Cd, Co, Cu, Fe, Li, Mn, Pb, V and Zn were studied in the solid phase at each 1-cm section. The profiles of Ag, Cd, Cu, Mn, Ni, Pb and Zn showed a slight recent pollution in the site with enrichment and anthropogenic factors higher than unity; and correlation analysis indicated a direct association with organic carbon. Al, Co, Cr, Fe, Li, and V concentration profiles displayed a negative correlation with organic C and positive with mud content and no consistent enrichment at surface. Based on the principal component analysis and correlation analysis, two principal groups of metals were identified. The first group includes Al, Co, Cr, Fe and Li, that are derived predominantly from the weathering of parent materials in the local bedrock; and the second group include most of the metals, which were relatively enriched at surficial sediments, that are produced mainly by anthropogenic activities such as agriculture (Cd, Cu and Zn), sewage effluents (Ag, Cd, Cu, Ni, Pb and Zn) and in lesser extent atmospheric deposition (Cd and Pb).  相似文献   

12.
Bottom sediments in coastal regions have been considered the ultimate sink for a number of contaminants, e.g., toxic metals. In this current study, speciation of metals in contaminated sediments of Oskarshamn harbor in the southeast of Sweden was performed in order to evaluate metal contents and their potential mobility and bioavailability. Sediment speciation was carried out by the sequential extraction BCR procedure for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn and the exchangeable (F1), reducible (F2), oxidizable (F3), and residual (R) fractions were determined. The results have shown that Zn and Cd were highly associated with the exchangeable fraction (F1) with 42–58 % and 43–46 %, respectively, of their total concentrations in the mobile phase. The assessment of sediment contamination on the basis of quality guidelines established by the Swedish Environmental Protection Agency (SEPA) and the Italian Ministry of Environment (Venice protocol for dredged sediments) has shown that sediments from Oskarshamn harbor are highly contaminated with toxic metals, especially Cu, Cd, Pb, Hg, As, and Zn posing potential ecological risks. Therefore, it is of crucial importance the implementation of adequate strategies to tackle contaminated sediments in coastal regions all over the world.  相似文献   

13.
A comparative study on metal sorption by brown seaweed   总被引:7,自引:0,他引:7  
Tsui MT  Cheung KC  Tam NF  Wong MH 《Chemosphere》2006,65(1):51-57
This study compared the sorption of Ag, Cd, Co, Cd, Mn, Ni, Pb and Zn by a Ca-treated Sargassum biomass at pH 5.0, under low and high ionic strength (IS) conditions. The sorption isotherms of As [As(V)] and Cr [Cr(III) and Cr(VI)] were also determined at low IS. The isotherm data for the eight cationic metals and Cr(III) were well fitted by Langmuir equations. Generally, the maximum metal uptake (Umax) followed: Cr(III) > Pb approximately Cu > Ag approximately Zn approximately Cd > Ni approximately Mn approximately Co > Cr(VI) > As(V) at low IS and Pb > Cu > Co > Mn approximately Cd > Zn approximately Ag > Ni at high IS. As(V) did not bind to the seaweed at pH 5.0. The results indicated that sorption of Pb was not affected by the increasing IS, though the percentage of free Pb ions in the water was greatly reduced as predicted by the speciation model. High IS lowered Umax by 10-36% (except Co and Pb), and lowered the affinity constant of the metal by 33-91% for all cationic metals, as compared to low IS. Moreover, the removal efficiency of the cationic metals and Cr decreased exponentially with initial metal concentrations and was lower at high IS. Ion-exchange was the mechanism responsible for the cationic metal sorption onto the seaweed, and Na ion interfered with the cationic metal binding through electrostatic interaction. In conclusion, this study showed the differential binding capacity of the Sargassm biomass for different metals and oxidation states and the differential effects of IS. According to the present results, Sargassum may be considered a good biosorbent for cationic metals (especially Pb) in both low and high-salt containing wastewater.  相似文献   

14.
Paddy soils and rice (Oryza sativa L.) contaminated by mixed heavy metals have given rise to great concern. Field experiments were conducted over two cultivation seasons to study the effects of steel slag (SS), fly ash (FA), limestone (LS), bioorganic fertilizer (BF), and the combination of SS and BF (SSBF) on rice grain yield, Cd, Pb, and Zn and nutrient accumulation in brown rice, bioavailability of Cd, Pb, and Zn in soil as well as soil properties (pH and catalase), at two acidic paddy fields contaminated with mixed heavy metals (Cd, Pb, and Zn). Compared to the controls, SS, LS, and SSBF at both low and high additions significantly elevated soil pH over both cultivation seasons. The high treatments of SS and SSBF markedly increased grain yields, the accumulation of P and Ca in brown rice and soil catalase activities in the first cultivation season. The most striking result was from SS application (4.0 t ha?1) that consistently and significantly reduced the soil bioavailability of Cd, Pb, and Zn by 38.5–91.2 % and the concentrations of Cd and Pb in brown rice by 20.9–50.9 % in the two soils over both cultivation seasons. LS addition (4.0 t ha?1) also markedly reduced the bioavailable Cd, Pb, and Zn in soil and the Cd concentrations in brown rice. BF remobilized soil Cd and Pb leading to more accumulation of these metals in brown rice. The results showed that steel slag was most effective in the remediation of acidic paddy soils contaminated with mixed heavy metals.  相似文献   

15.
某铅锌矿坑口周围具有重金属超积累特征植物的研究   总被引:6,自引:0,他引:6  
针对目前植物修复中Cd-Pb-Cu-Zn复合污染的超富集植物缺乏研究,采用野外采样系统分析方法,对青城子铅锌矿各主要坑口周围17科31种杂草植物进行其积累特性的初步研究。结果表明,全叶马兰(Kalimeris integrifolia)、蒲公英(Taraxacum mongolicum)和鬼针草(Bidens bipinnata)3种植物地上部对Cd的富集系数均>1,且地上部Cd含量大于根部Cd含量,具备了重金属超富集植物的基本特征,进一步研究的价值很大。以杂草为对象筛选超富集植物很可能获得较大突破。  相似文献   

16.
Three experiments were conducted to optimize the use of ethylenediaminetetraacetic acid (EDTA) for reclaiming urban soils contaminated with trace metals. As compared to Na(2)EDTA, (NH(4))(2)EDTA extracted 60% more Zn and equivalent amounts of Cd, Cu and Pb from a sandy loam. When successively saturating and draining loamy sand columns during a washing cycle, which submerged it once with a (NH(4))(2)EDTA wash and four times with deionised water, the post-wash rinses largely contributed to the total cumulative extraction of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn. Both the washing solution and the deionised water rinses were added in a 2:5 liquid to soil (L:S) weight ratio. For equal amounts of EDTA, concentrating the washing solution and applying it and the ensuing rinses in a smaller 1:5 L:S weight ratio, instead of a 2:5 L:S weight ratio, increased the extraction of targeted Cr, Cu, Ni, Pb and Zn.  相似文献   

17.
Nanoparticles offer the potential to improve environmental treatment technologies due to their unique properties. Adsorption of metal ions (Pb(II), Cd(II), Cu(II), Zn(II)) to nanohematite was examined as a function of sorbent concentration, pH, temperature, and exhaustion. Adsorption experiments were conducted with 0.05, 0.1, and 0.5 g/L nanoparticles in a pH 8 solution and in spiked San Antonio tap water. The adsorption data showed the ability of nanohematite to remove Pb, Cd, Cu, and Zn species from solution with adsorption increasing as the nanoparticle concentration increased. At 0.5 g/L nanohematite, 100 % Pb species adsorbed, 94 % Cd species adsorbed, 89 % Cu species adsorbed and 100 % Zn species adsorbed. Adsorption kinetics for all metals tested was described by a pseudo second-order rate equation with lead having the fastest rate of adsorption. The effect of temperature on adsorption showed that Pb(II), Cu(II), and Cd(II) underwent an endothermic reaction, while Zn(II) underwent an exothermic reaction. The nanoparticles were able to simultaneously remove multiple metals species (Zn, Cd, Pb, and Cu) from both a pH 8 solution and spiked San Antonio tap water. Exhaustion experiments showed that at pH 8, exhaustion did not occur for the nanoparticles but adsorption does decrease for Cd, Cu, and Zn species but not Pb species. The strong adsorption coupled with the ability to simultaneously remove multiple metal ions offers a potential remediation method for the removal of metals from water.  相似文献   

18.
Mining effluents are a potential source of toxic metals in the surrounding aquatic ecosystem and pose a potential health risk to humans from fish consumption. The objective of this paper is to assess the impact of the long-term Dabaoshan mining operation on heavy metal accumulation in different fish species. Heavy metal accumulation (lead (Pb), cadmium (Cd), zinc (Zn), and copper (Cu)) in four tissues (liver, muscle, intestine, and gills) of five carp species (Hypophthalmichthys molitrix, Ctenopharyngodon idellus, Megalobrama amblycephala, Aristichthys nobilis, and Carassius auratus auratus) from two fishponds exposed to effluent waters from Dabaoshan mine, South China. The bioaccumulation factor (BAF) and target hazard quotients were calculated to assess potential health risks to local residents through fish consumption. Levels of heavy metals varied depending on the analyzed tissues. C. auratus auratus accumulated the higher Pb, Cd, Zn, and Cu in the intestine compared with other fish species. Liver of all five species contained high concentrations of Pb, Cd, Zn, and Cu. The BAF for the studied metals showed a descending order of Cd?>?Zn?>?Cu?>?Pb for fishpond 1 and Zn?>?Cd?>?Cu?>?Pb for fishpond 2. Risk assessments suggested that potential human health risk may be present due to high Pb and Cd concentration in the muscle of some fish species exceeding the national and international limits, although the target hazard quotients were less than one.  相似文献   

19.
The present study investigates the concentration of Pb, Cd, Ni, Zn, and Cu in the paddy field soils collected from Tumpat, Kelantan. Soil samples were treated with sequential extraction to distinguish the anthropogenic and lithogenic origin of Pb, Cd, Ni, Zn, and Cu. ELFE and oxidizable-organic fractions were detected as the lowest accumulation of Pb, Cd, Ni, Zn, and Cu. Therefore, all the heavy metals examined were concentrated, particularly in resistant fraction, indicating that those heavy metals occurred and accumulated in an unavailable form. The utilization of agrochemical fertilizers and pesticides might not elevate the levels of heavy metals in the paddy field soils. In comparison, the enrichment factor and geoaccumulation index for Pb, Cd, Ni, Zn, and Cu suggest that these heavy metals have the potential to cause environmental risk, although they present abundance in resistant fraction. Therefore, a complete study should be conducted based on the paddy cycle, which in turn could provide a clear picture of heavy metals distribution in the paddy field soils.  相似文献   

20.
Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号