首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioaccumulation of As, Co, Cr and Mn by the benthic amphipod Hyalella azteca in Burlington City tap (Lake Ontario) water was measured in 4-week tests. Bioaccumulation increased with exposure concentration and demonstrated an excellent fit to a saturation model (r(2): 0.819, 0.838, 0.895 and 0.964 for As, Co, Cr and Mn, respectively). The proportion of total body Mn eliminated during a 24-h depuration period decreased as Mn body concentration increased, apparently due to a saturation of the elimination rate. The high maximum body concentration of 116,000 nmol g(-1) appears to result from the saturation of the Mn excretion which is slightly greater than the maximum Mn uptake rate. Elimination rates for As, Co and Cr were not dependent on body concentration. The four elements were not physiologically regulated in Hyalella. Their body concentrations should be good indicators of bioavailability and useful for environmental assessment.  相似文献   

2.
The kinetics of uptake and the effect of body size on uranium (U) bioaccumulation and toxicity to Hyalella azteca exposed to water-only U concentrations in soft water were evaluated. The effect of body size on U bioaccumulation was significant with a slope of ?0.35 between log body concentration and log body mass. A saturation kinetic model was satisfactory to describe the uptake rate, elimination rate and the effect of gut-clearance on size-corrected U bioaccumulation in H. azteca. The one-week lethal water concentrations causing 50% mortality for juvenile and adult H. azteca were 1100 and 4000 nmol U/L, respectively. The one-week lethal body concentration causing 50% mortality was 140 nmol U/g for juvenile H. azteca and 220 nmol U/g for adult H. azteca. One-week bioaccumulation studies that properly account for body-size and gut-clearance times can provide valuable data on U bioavailability and toxicity in the environment.  相似文献   

3.
Bioaccumulation by Hyalella of all metals studied so far in our laboratory was re-evaluated to determine if the data could be explained satisfactorily using saturation models. Saturation kinetics are predicted by the biotic ligand model (BLM), now widely used in modelling acute toxicity, and are a pre-requisite if the BLM is to be applied to chronic toxicity. Saturation models provided a good fit to all the data. Since these are mechanistically based, they provide additional insights into metal accumulation mechanisms not immediately apparent when using allometric models. For example, maximum Cd accumulation is dependent on the hardness of the water to which Hyalella are acclimated. The BLM may need to be modified when applied to chronic toxicity. Use of saturation models for bioaccumulation, however, also necessitates the need for using saturation models for dose-response relationships in order to produce unambiguous estimates of LC50 values based on water and body concentrations. This affects predictions of toxicity at very low metal concentrations and results in lower predicted toxicity of mixtures when many metals are present at low concentrations.  相似文献   

4.
The toxicity of ammonia to Hyalella azteca at constant pH in artificial media was controlled by sodium and potassium, and not by calcium, magnesium, or anions. Small increases in the LC50 for total ammonia (from 0.15 to 0.5 mM) occurred as sodium was increased from 0.1 to 1 mM and above, but major increases in the LC50 (to over 10 mM total ammonia) required the addition of potassium. Potassium was, however, more effective at reducing ammonia toxicity at high (1 mM) sodium than at low (0.1 mM) sodium. Ammonia toxicity was independent of pH at low sodium and potassium concentrations, when ammonia toxicity appeared to be associated primarily with aqueous ammonium ion concentrations. At high sodium and potassium concentrations, the toxicity of ammonia was reduced to the point where un-ionized ammonia concentrations also affected toxicity, and the LC50 became pH dependent. A mathematical model was produced for predicting ammonia toxicity from sodium and potassium concentrations and pH.  相似文献   

5.
Ammonia toxicity resulted in the continuous mortality of Hyalella azteca for up to 10 weeks with similar mortality rates for adults and young. Growth was not reduced at concentrations below those causing chronic mortality (1 mM total ammonia in Lake Ontario water), but reproduction was reduced at concentrations as low as 0.32 mM. Chronic mortality was a function of total ammonia (or ammonium ion), and not un-ionized ammonia, when the pH was adjusted by addition of acid. However, a 1 in 10 dilution of Lake Ontario water in distilled water resulted in a 10-fold reduction in the 4 week LC50. In contrast to common practice, ammonia toxicity to Hyalella is best defined on a total ammonia basis, but variations in hardness and other ions must be taken into account.  相似文献   

6.
To determine changes in metal distribution, bioavailability and toxicity with sediment depth, two 20-cm-long replicate cores were collected from a lake historically subjected to the influence of metal mining and smelting activity. The vertical distribution of Pb, Cd and Cu in sediment was similar for all three metals, with the surface layers showing enrichment and the deeper (pre-industrial) layers showing lower concentrations. Toxicity of each sediment core section was determined in laboratory tests with the freshwater amphipod Hyalella azteca. Bioavailable metal in each sediment slice was estimated from metal concentrations in overlying water in these toxicity tests and, for Cd, also from metal bioaccumulation. The profile for Cd in tissue was comparable to Cd in sediment and overlying water, but relative Cd bioavailability from sediment increased with sediment depth. Survival increased with increasing sediment depth, suggesting that surface sediments were probably less or non-toxic before industrialization.  相似文献   

7.
Thallium (Tl) is an extremely toxic but little studied metal. For Hyalella azteca exposed in Lake Ontario water, a 25% reduction in survival (the LC25) occurred at about 48 nmol litre(-1) after 4 weeks. Body concentrations of Tl, which were proportional to water concentrations, averaged 290 nmol g(-1) dry mass at the LC25. Growth was reduced at slightly lower concentrations. Concentrations affecting reproduction were variable at < 50% of the LC25. On a water-concentration basis Tl was more toxic than Ni, Cu or Zn, but less toxic than Cd or Hg to Hyalella; toxicity to Pb was similar. On a body-concentration basis, the toxicities of Tl, Cd, Hg and Pb were all similar. Unlike Cd, Tl toxicity and uptake was affected by K concentrations in the water, and not by Ca, Mg, Na or other ions. Toxicity was proportional to uptake, and body concentrations were better predictors of toxicity than water concentrations in media with varying K concentrations. Preliminary measurements of Tl and Cd uptake by Hyalella from Hamilton Harbour and Lake Ontario sediments suggested that total bioavailable metal concentrations were greater in deep-water sediments from Lake Ontario than in sediments from the harbour. The ratio of bioavailable metal to the toxic threshold was slightly higher for Cd than for Tl, but well below 1 for both metals.  相似文献   

8.
In the aquatic environment, polycyclic aromatic hydrocarbon (PAH) contamination can result from several anthropogenic sources such as petroleum runoff, industrial processes, and petroleum spills. When ultraviolet light (UV) is present at sufficient intensity, the acute toxicity of some PAHs to aquatic biota is greatly enhanced. This photo-induced toxicity of PAHs is directly influenced by the amount of PAH and by the level of UV intensity present in the aquatic environment. Thus, behavioral responses and habits that affect an aquatic organism's exposure to UV as well as exposure to PAHs can influence the extent to which damage due to photo-induced toxicity occurs. Experiments demonstrated the effects of photo-induced toxicity of anthracene and fluoranthene on the survival of two benthic macroinvertebrates, the midge Chironomus tentans and the freshwater amphipod Hyalella azteca. This study further investigated the survival and behavior of the test organisms in different substrates (no substrate, a sand monolayer, leaf discs, and sediment) with and without UV. The free-swimming, epibenthic H. azteca avoided the effects of photo-induced toxicity of PAHs to some extent by hiding in leaves when this substrate was available. Results emphasize the importance of organisms' behavior in affecting the photo-induced toxicity of PAHs in the aquatic environment.  相似文献   

9.
10.
《Chemosphere》2013,93(5):805-812
Chronic toxicity and bioaccumulation of decamethylcyclopentasiloxane (D5) to Hyalella azteca was examined in a series of spiked sediment exposures. Juvenile H. azteca were exposed for 28 d (chronic) to a concentration series of D5 in two natural sediments of differing organic carbon content (O.C.) and particle size composition. The chronic, LC50s were 191 and 857 μg D5 g−1 dry weight for Lakes Erie (0.5% O.C.) and Restoule (11% O.C.) respectively. Inhibition of growth only occurred with the L. Restoule spiked sediment with a resultant EC25 of 821 μg g−1 dw. Lethality was a more sensitive endpoint than growth inhibition. Biota sediment accumulation factors (BSAFs, 28 d) were <1 indicating that D5 did not bioconcentrate based on lipid normalized tissue concentrations and organic carbon normalized sediment concentrations. Organic carbon (OC) in the sediment appeared to be protective, however normalization to OC did not normalize the toxicity. Normalization of D5 concentrations in the sediments to sand content did normalize the toxicity and LC50 values of 3180 and 3570 μg D5 g−1 sand dw were determined to be statistically the same.  相似文献   

11.
Bioaccumulation and chronic toxicity of nickel (Ni) to Hyalella azteca in Ni-spiked sediments was strongly affected by the source of sediment used. The total range in LC50s on a sediment concentration basis ranged over 20 fold. Differences in Ni toxicity generally matched differences in Ni bioaccumulation, and toxicity expressed on a body concentration basis varied less than three fold. Body concentrations, therefore, provide a much more reliable prediction of Ni toxicity in sediments than do concentrations in the sediment. Ni in overlying water was also a reliable predictor of Ni toxicity, but only in tests conducted in Imhoff settling cones with large (67:1) water to sediment ratios. Overlying water LC50s for tests in beakers varied 18 fold. Sediment and body concentrations of Ni tolerated by Hyalella were slightly higher in cones than in beakers. Reproduction was not affected significantly by Ni at concentrations below the LC50 and 10-week EC50s for survival and biomass production (including survival, growth and reproduction) were only marginally lower than 4-week EC50s (survival and growth only).  相似文献   

12.
We assessed the aqueous toxicity mitigation capacity of a hydrologically managed floodplain wetland following a synthetic runoff event amended with a mixture of sediments, nutrients (nitrogen and phosphorus), and pesticides (atrazine, S-metolachlor, and permethrin) using 48-h Hyalella azteca survival and phytoplankton pigment, chlorophyll a. The runoff event simulated a 1 h, 1.27 cm rainfall event from a 16 ha agricultural field. Water (1 L) was collected every 30 min within the first 4 h, every 4 h until 48 h, and on days 5, 7, 14, 21, and 28 post-amendment at distances of 0, 10, 40, 300 and 500 m from the amendment point for chlorophyll a, suspended sediment, nutrient, and pesticide analyses. H. azteca 48-h laboratory survival was assessed in water collected at each site at 0, 4, 24, 48 h, 5 d and 7 d. Greatest sediment, nutrient, and pesticide concentrations occurred within 3 h of amendment at 0 m, 10 m, 40 m, and 300 m downstream. Sediments and nutrients showed little variation at 500 m whereas pesticides peaked within 48 h but at <15% of upstream peak concentrations. After 28 d, all mixture components were near or below pre-amendment concentrations. H. azteca survival significantly decreased within 48 h of amendment up to 300 m in association with permethrin concentrations. Chlorophyll a decreased within the first 24 h of amendment up to 40 m primarily in conjunction with herbicide concentrations. Variations in chlorophyll a at 300 and 500 m were associated with nutrients. Managed floodplain wetlands can rapidly and effectively trap and process agricultural runoff during moderate rainfall events, mitigating impacts to aquatic invertebrates and algae in receiving aquatic systems.  相似文献   

13.
Snucins E 《Ambio》2003,32(3):225-229
The recolonization of acid-damaged lakes in Killarney Park, Canada is described for 3 species of benthic invertebrates; 2 mayflies (Stenonema femoratum, Stenacron interpunctatum) and an amphipod (Hyalella azteca). Synoptic surveys of 119 lakes for amphipods and 77 lakes for mayflies were conducted between 1995 and 1997 and defined pH thresholds of 5.6 for S. femoratum and H. azteca and pH 5.3 for S. interpunctatum. In an intensive study of 2 acid-damaged lakes and 2 reference lakes from 1997 to 2002, reestablishment of S. interpunctatum, S. femoratum and H. azteca occurred, when timing of the events could be estimated, less than 4-8 years after pH thresholds for specific taxa were reached. Dispersal of S. interpunctatum to all habitat patches within a lake was completed 3 years after recolonization was detected in the smallest lake (11 ha). It is anticipated that dispersal throughout the largest lake (189 ha) will take much longer. The time lag from estimated pH recovery to reestablishment and subsequent dispersal of mayflies to all suitable habitats within a lake was as much as 11 to 22+ years. The density of S. interpunctatum increased in the recovering lakes to levels higher than in reference lakes, but stable endpoints have not yet been reached during 6 years of monitoring.  相似文献   

14.
Moore MT  Lizotte RE  Knight SS  Smith S  Cooper CM 《Chemosphere》2007,67(11):2184-2191
Three oxbow lakes in northwestern Mississippi, USA, an area of intensive agriculture, were assessed for biological impairment from historic and current-use pesticide contamination using the amphipod, Hyalella azteca. Surface water and sediment samples from three sites in each lake were collected from Deep Hollow, Beasley, and Thighman Lakes from September 2000 to February 2001. Samples were analyzed for 17 historic and current-use pesticides and selected metabolites. Ten-day H. azteca survival and growth (as length and dry weight) were measured to determine the degree of biological impairment. Maximum number of detectable pesticides in surface water from Deep Hollow, Beasley and Thighman Lakes was 10, 11, and 17, respectively. Maximum number of detectable pesticides in lake sediments was 17, 17, and 15, respectively. Bioassay results indicated no observable survival effects on H. azteca exposed to surface water or sediment from any lake examined and no growth impairment in animals exposed to lake sediments. However, growth was significantly impaired in surface water exposures from Deep Hollow Lake (2 sites) and Beasley Lake (1 site). Statistically significant relationships between growth impairment (length) and cyanazine, methyl parathion, λ-cyhalothrin, chlorfenapyr, and pp′DDE surface water concentrations in Deep Hollow Lake as well as trifluralin, atrazine, and methyl parathion in Beasley Lake were observed. Although pesticide frequency and concentrations were typically greater in sediment than surface water, bioassay results indicated decreased availability of these pesticides in sediment due to the presence of clay and organic carbon. Growth impairment observed in surface water exposures was likely due to complex interaction of pesticide mixtures that were present.  相似文献   

15.
Phytotoxicity of cobalt, chromium and copper in cauliflower   总被引:13,自引:0,他引:13  
Cauliflower (Brassica oleracea L. var. Botrytis cv. Maghi) was grown in refined sand with complete nutrition (control) and at 0.5 mM each of Co, Cr and Cu. In cauliflower, compared to that of excess Cu or Cr, the visible effects of excess Co appeared first and were most pronounced. Excess of each heavy metal restricted the biomass of cauliflower, concentrations of Fe, chlorophylls a and b, protein and activity of catalase in leaves in the order Co>Cu>Cr. The translocation of Cr from roots to tops was minimum and that of Co was maximum when cauliflower was individually supplied with excess Co, Cu or Cr. In cauliflower each heavy metal inhibited the concentration of most of the macro- and micronutrients. The translocation of P, S, Mn, Zn and Cu from roots to tops of cauliflower were affected most significantly by Co and least by Cr. In contrast to excess Cu or Cr, Co significantly decreased the water potential and transpiration rates and increased diffusive resistance and relative water content in leaves of cauliflower.  相似文献   

16.
Vinclozolin, a dicarboximide fungicide, is an endocrine disrupting chemical that competes with an androgenic endocrine disruptor compound. Most research has focused on the epigenetic effect of vinclozolin in humans. In terms of ecotoxicology, understanding the effect of vinclozolin on non-target organisms is important. The expression profile of a comprehensive set of genes in the amphipod Hyalella azteca exposed to vinclozolin was examined. The expressed sequence tags in low-dose vinclozolin-treated and -untreated amphipods were isolated and identified by suppression subtractive hybridization. DNA dot blotting was used to confirm the results and establish a subtracted cDNA library for comparing all differentially expressed sequences with and without vinclozolin treatment. In total, 494 differentially expressed genes, including hemocyanin, heatshock protein, cytochrome, cytochrome oxidase and NADH dehydrogenase were detected. Hemocyanin was the most abundant gene. DNA dot blotting revealed 55 genes with significant differential expression. These genes included larval serum protein 1 alpha, E3 ubiquitin-protein ligase, mitochondrial cytochrome c oxidase, mitochondrial protein, proteasome inhibitor, hemocyanin, zinc-finger–containing protein, mitochondrial NADH-ubiquinone oxidoreductase and epididymal sperm-binding protein. Vinclozolin appears to upregulate stress-related genes and hemocyanin, related to immunity. Moreover, vinclozolin downregulated NADH dehydrogenase, related to respiration. Thus, even a non-lethal concentration of vinclozolin still has an effect at the genetic level in H. azteca and presents a potential risk, especially as it would affect non-target organism hormone metabolism.  相似文献   

17.
Contamination by chromium (Cr) is widespread in agricultural soils and industrial sites. This heavy metal represents a risk to human health. In order to gain fundamental insights into the nature of the adaptation to Cr excess, the characterisation of physiological indices, including responses of photosynthetic gas exchange and chlorophyll a fluorescence along with changes in mineral nutrient contents and water status were studied in ray grass (Lolium perenne L.). Increased concentrations of Cr(VI) (0-500 microM Cr) in the Co?c and Lessaint nutrient solution were applied. The growth of Lolium perenne is decreased by chromium and the leaves have lost their pigments. Chromium accumulation was greater in roots than in leaves and reached 2450 and 210 microg g(-1) DW, respectively with 500 microM Cr(VI) in nutrient medium. The physiological parameters were severely reduced by this heavy metal. Cr induced toxicity arising from 100 microM Cr(VI) and resulted in a modification of mineral content in roots and leaves, especially for Ca, Mg and Fe. The chromium stress decreased CO2 assimilation rates mainly due to stomatal closure, which reduced water loss by transpiration without decreasing the cellular available CO2. The fluorescence parameters associated with photosystem II (PSII) activity and the photochemical activity are modified by chromium. Non-radiative energy dissipation mechanisms were triggered during stress since non-photochemical quenching was increased and efficiency of excitation capture by open centers was reduced.  相似文献   

18.
Hyalella were caged at three sites in each of the two rivers for 17 days. Food added to the cages consisted of plant and detrital material collected from the same, or other, sites. Concentrations of some metals in Hyalella (e.g., Cd and Cu), but not others (e.g., Se), appeared to reach steady-state within 5 days in one of the rivers. Metal accumulation was minimal by day 5 in the other river, possibly due to the very low temperatures in this river for the first part of the exposure period. Both analysis of variance and analysis of covariance, using site as a categorical variable and metal in food as either a categorical or continuous variable, indicated that Cd, Cu and Se were the only metals for which concentration in food had a significant effect on concentration in Hyalella. Nevertheless, water was still a major source for these metals as well. Other metals which varied by over fivefold in food but for which concentration in food had no effect on concentration in Hyalella included Ag, As, Bi, Sb, U and Zn. Concentrations of the remaining metals varied less than fourfold in food, making it difficult to determine if these were accumulated from food.  相似文献   

19.
The expansion of urbanization introduces air pollution to wildlife areas. Some metal contaminants occurring in concentrations too small to have any measurable impact on adult birds may seriously affect embryos that are more sensitive to contaminants than the adult. Chromium, manganese, and lead are toxic and can be passed from the hen to the egg. This study relates the concentrations of these metals in eggs to their concentrations in air in three cities. Rock dove eggs were sampled and air pollution records were examined in the California cities of Riverside, Los Angeles, and San Francisco. The eggs from San Francisco did not differ from those of Los Angeles in lead concentration but the air did differ. The eggs collected in Los Angeles in 1998 had concentrations of chromium greater than in those from Riverside and from Los Angeles 1999 but the air had concentrations of chromium that did not differ among those three collections. Concentrations of manganese did not differ among the eggs but did differ among the air samples of the three cities. Exposures of embryos to chromium and manganese in this study were not at levels warranting concern. Although the concentration at which lead in eggs impairs avian health is not established, the highest concentrations found in this study exceed estimated safe concentrations. There is no indication that embryo exposure is directly related to atmospheric levels of these metals in the cities of this study.  相似文献   

20.
Environmental Science and Pollution Research - The present study was undertaken to appraise the efficacy of exogenous taurine in alleviating boron (B) and chromium (Cr) toxicity. Taurine protects...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号