共查询到7条相似文献,搜索用时 109 毫秒
1.
The global decline of freshwater biodiversity caused by climate change and human activities are supposed to disrupt ecosystem services related to water quality and alter the structure and function of aquatic communities across space and time, yet the effects of the combination of these factors on plankton community ecosystem has received relatively little attention. This study aimed to explore the impacts of disturbances (e.g. human activity, temperature, precipitation, and water level) on phytoplankton community structure (i.e. community evenness and community composition) and function (i.e. resource use efficiency) in four subtropical reservoirs over 7 years from 2010 to 2016. Our results showed that community turnover (measured as community dissimilarity) was positively related to disturbance frequency, but no significant correlation was found between phytoplankton biodiversity (i.e. evenness) and disturbance frequency. Phytoplankton resource use efficiency (RUE = phytoplankton biomass/ total phosphorus) was increased with a higher frequency of disturbance with an exception of cyanobacteria. The RUE of Cyanobacteria and diatoms showed significantly negative correlations with their community evenness, while the RUE of Chlorophyta exhibited a positive correlation with their community turnover. We suggest that multiple environmental disturbances may play crucial roles in shaping the structure and functioning of plankton communities in subtropical reservoirs, and mechanism of this process can provide key information for freshwater uses, management and conservation. 相似文献
2.
《环境科学学报(英文版)》2023,35(3):544-552
Ammonia nitrogen (NH4+-N) is a ubiquitous environmental pollutant, especially in offshore aquaculture systems. Electrochemical oxidation is very promising to remove NH4+-N, but suffers from the use of precious metals anodes. In this work, a robust and cheap electrocatalyst, iron single-atoms distributed in nitrogen-doped carbon (Fe-SAs/N-C), was developed for electrochemical removal of NH4+-N from in wastewater containing chloride. The Fe-SAs/N-C catalyst exhibited superior activity than that of iron nanoparticles loaded carbon (Fe-NPs/N-C), unmodified carbon and conventional Ti/IrO2-TiO2-RuO2 electrodes. And high removal efficiency (> 99%) could be achieved as well as high N2 selectivity (99.5%) at low current density. Further experiments and density functional theory (DFT) calculations demonstrated the indispensable role of single-atom iron in the promoted generation of chloride derived species for efficient removal of NH4+-N. This study provides promising inexpensive catalysts for NH4+-N removal in aquaculture wastewater. 相似文献
3.
Yigang Yang Huihuang Chen Mamun Abdullah Al Jean Claude Ndayishimiye Jun R Yang Alain Isabwe Anqi Luo Jun Yang 《环境科学学报(英文版)》2022,34(2):140-151
Urbanization often exerts multiple effects on aquatic and terrestrial organisms, including changes in biodiversity, species composition and ecosystem functions. However, the impacts of urbanization on river phytoplankton in subtropical urbanizing watersheds remain largely unknown. Here, we explored the effects of urbanization on phytoplankton community structure(i.e., biomass, community composition and diversity) and function(i.e., resource use efficiency) in a subtropical river at watershed sca... 相似文献
4.
高原湖泊典型农业小流域氮、磷排放特征研究——以凤羽河小流域为例 总被引:5,自引:1,他引:5
通过对凤羽河小流域出水口断面进行定位连续监测,计算流域出水量和氮磷排放量,解析了流域氮磷排放量的时间变化特征,以期为小流域氮磷排放量计算、农业管理措施调控、削减流域氮磷排放量提供科学依据.结果表明,凤羽河小流域年度水流量为0.99亿m3,7—9月雨季水流量占全年的43.70%.小流域总氮(TN)的年排放量为139.8 t,可溶性总氮(DTN)是氮的主要排放形式,占TN的71.16%,颗粒态氮(PN)占TN的28.84%.小流域总磷(TP)的年排放量为27.7 t,颗粒态磷(PP)是磷的主要排放形式,占TP的76.47%,可溶性总磷(DTP)占TP的23.53%.7—9月雨季氮磷排放量占全年总量的比例分别为55.33%和77.81%.降雨是影响流域径流过程的重要因素,同时,流域内农业管理措施对径流量和氮磷排放具有较大影响. 相似文献
5.
Xiping Liu Yangyang Fan Junxia Long Ruifeng Wei Roger Kjelgren Chunmei Gong Jun Zhao 《环境科学学报(英文版)》2013,25(3):585-595
The efficient use of water and nitrogen (N) to promote growth and increase yield of fruit trees and crops is well studied.However,little is known about their effects on woody plants growing in arid and semiarid areas with limited water and N availability.To examine the effects of water and N supply on early growth and water use efficiency (WUE) of trees on dry soils,one-year-old seedlings of Robinia pseudoacacia were exposed to three soil water contents (non-limiting,medium drought,and severe drought) as well as to low and high N levels,for four months.Photosynthetic parameters,leaf instantaneous WUE (WUEi) and whole tree WUE (WUEb) were determined.Results showed that,independent of N levels,increasing soil water content enhanced the tree transpiration rate (Tr),stomatal conductance (Gs),intercellular CO2 concentration (Ci),maximum net assimilation rate (Amax),apparent quantum yield (AQY),the range of photosynthetically active radiation (PAR) due to both reduced light compensation point and enhanced light saturation point,and dark respiration rate (Rd),resulting in a higher net photosynthetic rate (Pn) and a significantly increased whole tree biomass.Consequently,WUEi and WUEb were reduced at low N,whereas WUE i was enhanced at high N levels.Irrespective of soil water availability,N supply enhanced Pn in association with an increase of Gs and Ci and a decrease of the stomatal limitation value (Ls),while Tr remained unchanged.Biomass and WUEi increased under non-limiting water conditions and medium drought,as well as WUEb under all water conditions;but under severe drought,WUEi and biomass were not affected by N application.In conclusion,increasing soil water availability improves photosynthetic capacity and biomass accumulation under low and high N levels,but its effects on WUE vary with soil N levels.N supply increased Pn and WUE,but under severe drought,N supply did not enhance WUEi and biomass. 相似文献
6.
Hemraj Bhattarai Lekhendra Tripathee Shichang Kang Chhatra Mani Sharm Pengfei Chen Junming Guo Prakriti Sharma Ghimire 《环境科学学报(英文版)》2021,33(4):37-52
Precipitation represents an important phenomenon for carbon and nitrogen deposition. Here, the concentrations and fluxes of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) with their potential sources were analyzed in wet precipitation during summer monsoon from the Northern Indo-Gangetic Plain (IGP), important but neglected area. The volume-weighted mean (VWM) concentration of DOC and TDN were 687.04 and 1210.23 µg/L, respectively. Similarly, the VWM concentration of major ions were in a sequence of NH4+ > Ca2+ > SO42- > Na+ > K+ > NO3? > Cl? > Mg2+ > F? > NO2?, suggesting NH4+ and Ca2+ from agricultural activities and crustal dust played a vital role in precipitation chemistry. Moreover, the wet deposition flux of DOC and TDN were 9.95 and 17.06 kg/(ha?year), respectively. The wet deposition flux of inorganic nitrogen species such as NH4+-N and NO3?-N were 14.31 and 0.47 kg/(ha?year), respectively, demonstrating the strong influence of emission sources and precipitation volume. Source attribution from different analysis suggested the influence of biomass burning on DOC and anthropogenic activities (agriculture, animal husbandry) on nitrogenous species. The air-mass back trajectory analysis indicated the influence of air masses originating from the Bay of Bengal, which possibly carried marine and anthropogenic pollutants along with the biomass burning emissions to the sampling site. This study bridges the data gap in the less studied part of the northern IGP region and provides new information for policy makers to deal with pollution control. 相似文献
7.
Shuidi He Minjuan Huang Lianming Zheng Ming Chang Weihua Chen Qianqian Xie Xuemei Wang 《环境科学学报(英文版)》2022,34(4):444-453
This study attempts to identify the dominant transport pathways, potential source areas, and their seasonal variation at sites with high inorganic nitrogen (IN) wet deposition flux in southern China. This is a long-term study (2010–2017) based on continuous deposition measurements at the Guangzhou urban site (GZ) and the Dinghushan Natural Reserve site (DHS) located in the Pearl River Delta (PRD) region. A dataset on monthly IN concentration in precipitation and wet deposition flux were provided. The average annual fluxes measured at both sites (GZ: 33.04±9.52, DHS: 20.52±10.22 kg N/(ha∙year)) were higher, while the ratios of reduced to oxidized N (GZ: 1.19±0.77, DHS: 1.25±0.84) were lower compared with the national mean level and the previous reported level throughout the PRD region. The dominant pathways were not always consistent with the highest proportional trajectory clusters. The transport pathways contributing most of deposition were identified in the north and north-northeast in the dry season and in the east-southeast, east, and south-southwest in the wet season. A weighted potential source contribution function (WPSCF) value >0.3 was determined reasonably to define the potential source area. Emission within the PRD region contributed the majority (≥95% at both sites) of the IN deposition in the wet season, while the contribution outside the region increased significantly in the dry season (GZ: 27.86%, DHS: 95.26%). Our results could help create more effective policy to control precursor emissions for IN fluxes, enabling reduction of the ecological risks due to excessive nitrogen. 相似文献