共查询到10条相似文献,搜索用时 46 毫秒
1.
Herein,with the exploitation of iron and nickel electrodes,the 2,4-dichlorophenol(2,4-DCP)dechlorinating processes at the anode and cathode,respectively,were separately studied via various electrochemical techniques(e.g.,Tafel polarization,linear polarization,electrochemical impedance spectroscopy).With this in mind,Ni/Fe nanoparticles were prepared by chemical solution deposition,and utilized to test the dechlorination activities of 2,4-DCP over a bimetallic system.For the iron anode,the results showed that higher 2,4-DCP concentration and solution acidity aggravated the corrosion within the electrode.The charge transfer resistance(R_(ct))values of the iron electrode were 703,473,444,and 437Ω·cm~2 for the initial 2,4-DCP concentrations of0,20,50,and 80 mg/L,respectively.When the bulk pH of the 2,4-DCP solution varied from 3.0,5.0to 7.0,the corresponding R_(ct) values were 315,376,and 444Ω·cm~2,respectively.For the nickel cathode,the reduction current densities on the electrode at-0.75 V(vs.saturated calomel electrode)were 80,106,and 111μA/cm~2,for initial 2,4-DCP concentrations of 40,80,and125 mg/L.The dechlorination experiments demonstrated that when the initial pH of the solution was 7.0,5.0,and 3.0,the dechlorination percentage of 2,4-DCP by Ni/Fe nanoparticles was 62%,69%,and 74%,respectively,which was in line with the electrochemical experiments.10 wt.%Ni loading into Ni/Fe bimetal was affordable and gave a good dechlorination efficiency of 2,4-DCP,and fortunately the Ni/Fe nanoparticles remained comparatively stable in the dechlorination processes at pH 3.0. 相似文献
2.
Environmental photocatalysis is a promising technology for treating antibiotics in wastewater.In this study,a supercritical carbonization method was developed to synthesize a single-atom photocatalyst with a high loading of Ni (above 5 wt.%) anchored on a carbonnitrogen-silicate substrate for the efficient photodegradation of a ubiquitous environmental contaminant of tetracycline (TC).The photocatalyst was prepared from an easily obtained metal-biopolymer-inorganic supramolecular hydrogel,follow... 相似文献
3.
The degradation of pharmaceutical micropollutants is an intensifying environmental problem and synthesis of efficient photocatalysts for this purpose is one of the foremost challenges worldwide.Therefore,this study was conducted to develop novel plasmonic Ag/Ag2O/BiVO4 nanocomposite photocatalysts by simple precipitation and thermal decomposition methods,which could exhibit higher photocatalytic activity for mineralized pharmaceutical micropollutants.Among the different tre... 相似文献
4.
《环境科学学报(英文版)》2023,35(4):249-262
AgCl/ZnO/g-C3N4, a visible light activated ternary composite catalyst, was prepared by combining calcination, hydrothermal reaction and in-situ deposition processes to treat/photocatalyse tetracycline hydrochloride (TC-HCl) from pharmaceutical wastewater under visible light. The morphological, structural, electrical, and optical features of the novel photocatalyst were characterized using scanning electron microscopy (SEM), UV-visible light absorption spectrum (UV–Vis DRS), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and transient photocurrent techniques. All analyses confirmed that the formation of heterojunctions between AgCl/ZnO and g-C3N4 significantly increase electron-hole transfer and separation compared to pure ZnO and g-C3N4. Thus, AgCl/ZnO/g-C3N4 could exhibit superior photocatalytic activity during TC-HCl assays (over 90% removal) under visible light irradiation. The composite could maintain its photocatalytic stability even after four consecutive reaction cycles. Hydrogen peroxide (H2O2) and superoxide radical (·O2) contributed more than holes (h+) and hydroxyl radicals (·OH) to the degradation process as showed by trapping experiments. Liquid chromatograph-mass spectrometer (LC-MS) was used for the representation of the TC-HCl potential degradation pathway. The applicability and the treatment potential of AgCl/ZnO/g-C3N4 against actual pharmaceutical wastewater showed that the composite can achieve removal efficiencies of 81.7%, 71.4% and 69.0% for TC-HCl, chemical oxygen demand (COD) and total organic carbon (TOC) respectively. AgCl/ZnO/g-C3N4 can be a prospective key photocatalyst in the field of degradation of persistent, hardly-degradable pollutants, from industrial wastewater and not only. 相似文献
5.
Saima Noor Shamaila Sajja Sajjad Ahmed Khan Leghari Cristina Flox Saeed Ahmad 《环境科学学报(英文版)》2021,33(10):107-119
The promising solar irradiated photocatalyst by pairing of bismuth oxide quantum dots (BQDs) doped TiO2 with nitrogen doped graphene oxide (NGO) nanocomposite (NGO/BQDs-TiO2) was fabricated. It was used for degradation of organic pollutants like 2,4-dichlorophenol (2,4-DCP) and stable dyes, i.e. Rhodamine B and Congo Red. X-ray diffraction (XRD) profile of NGO showed reduction in oxygenic functional groups and restoring of graphitic crystal structure. The characteristic diffraction peaks of TiO2 and its composites showed crystalline anatase TiO2. Morphological images represent spherical shaped TiO2 evenly covered with BQDs spread on NGO sheet. The surface linkages of , , and vibrational modes are observed by Fourier transform infrared spectroscopy (FTIR) and Raman studies. BQDs and NGO modified TiO2 results into red shifting in visible region as studied in diffused reflectance spectroscopy (DRS). NGO and BQDs in TiO2 are linked with defect centers which reduced the recombination of free charge carriers by quenching of photoluminescence (PL) intensities. X-ray photoelectron spectroscopy (XPS) shows that no peak related to in NGO/BQDs-TiO2 is observed. This indicated that doping of nitrogen into GO has reduced some oxygen functional groups. Nitrogen functionalities in NGO and photosensitizing effect of BQDs in ternary composite have improved photocatalytic activity against organic pollutants. Intermediate byproducts during photo degradation process of 2,4-DCP were studied through high performance liquid chromatography (HPLC). Study of radical scavengers indicated that has significant role for degradation of 2,4-DCP. Our investigations propose that fabricated nanohybrid architecture has potential for degradation of environmental pollutions. 相似文献
6.
《环境科学学报(英文版)》2023,35(3):349-361
At present, the high re-combination rate of photogenerated carriers and the low redox capability of the photocatalyst are two factors that severely limit the improvement of photocatalytic performance. Herein, a dual Z-scheme photocatalyst bismuthzirconate/graphitic carbon nitride/silver phosphate (Bi2Zr2O7/g-C3N4/Ag3PO4 (BCA)) was synthesized using a co-precipitation method, and a dual Z-scheme heterojunction photocatalytic system was established to decrease the high re-combination rate of photogenerated carriers and consequently improve the photocatalytic performance. The re-combination of electron-hole pairs (e− and h+) in the valence band (VB) of g-C3N4 increases the redox potential of e− and h+, leading to significant improvements in the redox capability of the photocatalyst and the efficiency of e−-h+ separation. As a photosensitizer, Ag3PO4 can enhance the visible light absorption capacity of the photocatalyst. The prepared photocatalyst showed strong stability, which was attributed to the efficient suppression of photo-corrosion of Ag3PO4 by transferring the e− to the VB of g-C3N4. Tetracycline was degraded efficiently by BCA-10% (the BCA with 10 wt.% of AgPO4) under visible light, and the degradation efficiency was up to 86.2%. This study experimentally suggested that the BCA photocatalyst has broad application prospects in removing antibiotic pollution. 相似文献
7.
Wenxia Wang Zhen Li Kailin Wu Guodong Dai Qingping Chen Lihua Zhou Junxia Zheng Liang Ma Guiying Li Wanjun Wang Taicheng An 《环境科学学报(英文版)》2023,35(9):123-140
Rational design and synthesis of highly efficient and robust photocatalysts with positive exciton splitting and interfacial charge transfer for environmental applications is critical.Herein, aiming at overcoming the common shortcomings of traditional photocatalysts such as weak photoresponsivity, rapid combination of photo-generated carriers and unstable structure, a novel Ag-bridged dual Z-scheme g-C3N4/BiOI/AgI plasmonic heterojunction was successfully synthesized using a... 相似文献
8.
《环境科学学报(英文版)》2023,35(7):139-151
This study investigated the enhancement effects of dissolved carbonates on the peroxymonosulfate-based advanced oxidation process with CuS as a catalyst. It was found that the added CO32− increased both the catalytic activity and the stability of the catalyst. Under optimized reaction conditions in the presence of CO32−, the degradation removal of 4-methylphenol (4-MP) within 2 min reached 100%, and this was maintained in consecutive multi-cycle experiments. The degradation rate constant of 4-MP was 2.159 min−1, being 685% greater than that in the absence of CO32− (0.315 min−1). The comparison of dominated active species and 4-MP degradation pathways in both CO32−-free and CO32−-containing systems suggested that more CO3•−/1O2 was produced in the case of CO32−deducing an electron transfer medium, which tending to react with electron-rich moieties. Meanwhile, Characterization by X-ray photoelectron spectroscopic and cyclic voltammetry measurement verified CO32− enabled the effective reduction of Cu2+ to Cu+. By investigating the degradation of 11 phenolics with different substituents, the dependence of degradation kinetic rate constant of the phenolics on their chemical structures indicated that there was a good linear relationship between the Hammett constants σp of the aromatic phenolics and the logarithm of k in the CO32−-containing system. This work provides a new strategy for efficient removal of electron-rich moieties under the driving of carbonate being widely present in actual water bodies. 相似文献
9.
《环境科学学报(英文版)》2023,35(12):65-76
BiOI/ZnO/rGO (reduced graphene oxide) composite photocatalyst was fabricated using a simple one−step hydrothermal process and applied to the degradation of antibiotic chloramphenicol (CAP). By tuning the Bi/Zn ratios, the structure and photoelectric properties of the catalyst were investigated and characterized in terms of their morphological, structural, optical and photoelectrochemical properties. The as-synthesized composite photocatalysts are well-crystalline, uniform dispersion and exhibit good photocatalytic properties. The photocatalytic degradation rate of CAP by BiOI/ZnO/rGO composite is 8.1 times and 1.8 times that of BiOI and ZnO, respectively. The photocatalytic mechanism studies revealed that the synergistic effect between rGO and BiOI/ZnO can effectively separate photogenerated electron–hole, enhance photocurrents and conductivity, and improve charge carrier densities. Moreover, BiOI/ZnO/rGO possesses good stability and reusability that the degradation efficiency remained above 80% even after 5 recycling. This study reveals that both the introduction of rGO and heterostructure construction between BiOI and ZnO play a crucial role in their photoelectrochemical and photocatalytic properties. 相似文献
10.
Xiao Chen Yong Wang Jianyu Li Zhongheng Hu Ying Zhou Huayan Liu Hanfeng Lu 《环境科学学报(英文版)》2022,34(6):114-124
The preparation of highly active supported noble metal catalysts with a low noble metal loading has always been the ultimate goal of researchers working on catalysis. Hydrothermally treated Pt/Al2O3 (Pt/Al2O3-H) exhibits better catalytic activity than that (Pt/Al2O3-C) treated via the conventional calcination approach. At the high space velocity of 100,000 mL/(g∙hr), the temperature that correspond to 50% toluene conversion (T50) of Pt/Al2O3-H is 115°C lower than that of Pt/Al2O3-C, and the turnover frequency (TOF) value can reach 0.0756 sec−1. The mechanism by which the hydrothermal approach enhances Pt/Al2O3 activity has been investigated. The structure associated with the high catalytic activity of Pt nanoparticles (NPs) can be retained via hydrothermal treatment. Furthermore, the support is transformed to AlO(OH) with numerous surface hydroxyl groups, which in turn can facilitate the adsorption of toluene. And the synergistic effects of Pt NPs and AlO(OH) increases the contents of Pt in oxidation state and active oxygen, which are beneficial for toluene oxidation. 相似文献