首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Dissolved inorganic carbon (DIC) is an important source of carbon in aquatic ecosystems, especially under conditions of increased frequency of cyanobacterial bloom. However, the importance of bacteria in direct or indirect utilization of DIC has been widely overlooked in eutrophic freshwater. To identify the functional bacteria that can actively utilize DIC in eutrophic freshwater during cyanobacterial bloom, stable-isotope probing (SIP) experiments were conducted on eutrophic river water with or without inoculation with cyanobacteria (Microcystis aeruginosa). Our 16S rRNA sequencing results revealed the significance of Betaproteobacteria, with similar relative abundance as Alphaproteobacteria, in the active assimilation of H13CO3? into their DNA directly or indirectly, which include autotrophic genera Betaproteobacterial ammonia-oxidizing bacteria. Other bacterial groups containing autotrophic members, e.g. Planctomycetes and Nitrospira, also presented higher abundance among free-living bacteria in water without cyanobacteria. Microcystis aggregates showed a preference for some specific bacterial members that may utilize H13CO3? metabolized by Microcystis as organic matter, e.g. Bacteroidetes (Cytophagales, Sphingobacteriales), and microcystin-degrading bacteria Betaproteobacteria (Paucibacter/Burkholderiaceae). This study provides some valuable information regarding the functional bacteria that can actively utilize DIC in eutrophic freshwater.  相似文献   

2.
Freshwater cyanobacterial blooms have drawn public attention because they threaten the safety of water resources and human health worldwide. Heavy cyanobacterial blooms outbreak in Lake Taihu in summer annually and vanish in other months. To find out the factors impacting the cyanobacterial blooms, the present study measured the physicochemical parameters of water and investigated the composition of microbial community using the 16S rRNA gene and internal transcribed spacer amplicon sequencing in the months with or without bloom. The most interesting finding is that two major cyanobacteria, Planktothrix and Microcystis, dramatically alternated during a cyanobacterial bloom in 2016, which is less mentioned in previous studies. When the temperature of the water began increasing in July, Planktothrix appeared first and showed as a superior competitor for M. aeruginosa in NO3?-rich conditions. Microcystis became the dominant genus when the water temperature increased further in August. Laboratory experiments confirmed the influence of temperature and the total dissolved nitrogen (TDN) form on the growth of Planktothrix and Microcystis in a co-culture system. Besides, species interactions between cyanobacteria and non-cyanobacterial microorganisms, especially the prokaryotes, also played a key role in the alteration of Planktothrix and Microcystis. The present study exhibited the alteration of two dominant cyanobacteria in the different bloom periods caused by the temperature, TDN forms as well as the species interactions. These results helped the better understanding of cyanobacterial blooms and the factors which contribute to them.  相似文献   

3.
The seasonal changes in dissolved organic matter (DOM), and its correlation with the release of internal nutrients during the annual cycle of cyanobacteria in the eutrophic Lake Chaohu, China, were investigated from four sampling periods between November 2020 and July 2021. The DOM fluorescence components were identified as protein-like C1, microbial humic-like C2, and terrestrial humic-like C3. The highest total fluorescence intensity (FT) of DOM in sediments during the incubation stage is due to the decomposition and degradation of cyanobacteria remains. The lowest humification of DOM and the highest proportion of C1 in waters during the initial cyanobacterial growth indicate that fresh algae are the main source. The highest molecular weight of DOM and FT of the C2 in sediments during cyanobacterial outbreaks indicate the concurrent deposition of undegraded cyanobacterial remains and microbial degradation. The components of DOM are affected mainly by the dissolved total phosphorus in waters, while the temperature drives the annual cycle of cyanobacteria. The decreasing C1 in sediments and increasing nutrients in waters from the cyanobacterial incubation to outbreak indicate that mineralization of algal organic matter contributes importantly to the release of internal nutrients, with the strongest release of phosphorus observed during the early growth of cyanobacteria. The humic-like C2 and C3 components could also affect the dynamics of internal phosphorus through the formation of organic colloids and organic–inorganic ligands. The results show that the degradation of DOM leads to nutrients release and thus supports the continuous growth of cyanobacteria in eutrophic Lake Chaohu.  相似文献   

4.
Anaerobic sludge from a sewage treatment plant was used to acclimatize microbial colonies capable of anaerobic oxidation of methane (AOM) coupled to sulfate reduction. Clone libraries and fluorescence in situ hybridization were used to investigate the microbial population. Sulfate-reducing bacteria (SRB) (e.g., Desulfotomaculum arcticum and Desulfobulbus propionicus) and anaerobic methanotrophic archaea (ANME) (e.g., Methanosaeta sp. and Methanolinea sp.) coexisted in the enrichment. The archaeal and bacterial cells were randomly or evenly distributed throughout the consortia. Accompanied by sulfate reduction, methane was oxidized anaerobically by the consortia of methane-oxidizing archaea and SRB. Moreover, CH4 and SO42 ? were consumed by methanotrophs and sulfate reducers with CO2 and H2S as products. The H3CSH produced by methanotrophy was an intermediate product during the process. The methanotrophic enrichment was inoculated in a down-flow biofilter for the treatment of methane and H2S from a landfill site. On average, 93.33% of H2S and 10.71% of methane was successfully reduced in the biofilter. This study tries to provide effective method for the synergistic treatment of waste gas containing sulfur compounds and CH4.  相似文献   

5.
The degradation of atrazine (ATZ), sulfamethoxazole (SMX) and metoprolol (MET) in flow-through VUV/UV/H2O2 reactors was investigated with a focus on the effects of H2O2 dosage and reactor internal diameter (ID). Results showed that the micropollutants were degraded efficiently in the flow-through VUV/UV/H2O2 reactors following the pseudo first-order kinetics (R2 > 0.92). However, the steady-state assumption (SSA) kinetic model being vital in batch reactors was found invalid in flow-through reactors where fluid mixing was less sufficient. With the increase of H2O2 dosage, the ATZ removal efficiency remained almost constant while the SMX and MET removal was enhanced to different extents, which could be explained by the different reactivities of the pollutants towards HO?. A larger reactor ID resulted in lower degradation rate constants for all the three pollutants on account of the lower average fluence rate, but the change in energy efficiency was much more complicated. In reality, the electrical energy per order (EEO) of the investigated VUV/UV/H2O2 treatments ranged between 0.14–0.20, 0.07–0.14 and 0.09–0.26 kWh/m3/order for ATZ, SMX and MET, respectively, with the lowest EEO for each pollutant obtained under varied H2O2 dosages and reactor IDs. This study has demonstrated the efficiency of VUV/UV/H2O2 process for micropollutant removal and the inadequacy of the SSA model in flow-through reactors, and elaborated the influential mechanisms of H2O2 dosage and reactor ID on the reactor performances.  相似文献   

6.
Generation of hydroxyl radicals (?OH) is the basis of advanced oxidation process (AOP). This study investigates the catalytic activity of microporous carbonaceous structure for in-situ generation of ?OH radicals. Biochar (BC) was selected as a representative of carbon materials with a graphitic structure. The work aims at assessing the impact of BC structure on the activation of H2O2, the reinforcement of the persistent free radicals (PFRs) in BC using heavy metal complexes, and the subsequent AOP. Accordingly, three different biochars (raw, chemically- and physiochemically-activated BCs) were used for adsorption of two metal ions (nickel and lead) and the degradation of phenol (100 mg/L) through AOP. The results demonstrated four outcomes: (1) The structure of carbon material, the identity and the quantity of the metal complexes in the structure play the key roles in the AOP process. (2) the quantity of PFRs on BC significantly increased (by 200%) with structural activation and metal loading. (3) Though the Pb-loaded BC contained a larger quantity of PFRs, Ni-loaded BC exhibited a higher catalytic activity. (4) The degradation efficiency values for phenol by modified biochar in the presence of H2O2 was 80.3%, while the removal efficiency was found to be 17% and 22% in the two control tests, with H2O2 (no BC) and with BC (no H2O2), respectively. Overall, the work proposes a new approach for dual applications of carbonaceous structures; adsorption of metal ions and treatment of organic contaminants through in-situ chemical oxidation (ISCO).  相似文献   

7.
A microwave-H2O2 process for sludge pretreatment exhibited high efficiencies of releasing organics, nitrogen, and phosphorus, but large quantities of H2O2 residues were detected. A uniform design method was thus employed in this study to further optimize H2O2 dosage by investigating effects of pH and H2O2 dosage on the amount of H2O2 residue and releases of organics, nitrogen, and phosphorus. A regression model was established with pH and H2O2 dosage as the independent variables, and H2O2 residue and releases of organics, nitrogen, and phosphorus as the dependent variables. In the optimized microwave-H2O2 process, the pH value of the sludge was firstly adjusted to 11.0, then the sludge was heated to 80℃ and H2O2 was dosed at a H2O2:mixed liquor suspended solids (MLSS) ratio of 0.2, and the sludge was finally heated to 100℃ by microwave irradiation. Compared to the microwave-H2O2 process without optimization, the H2O2 dosage and the utilization rate of H2O2 in the optimized microwave-H2O2 process were reduced by 80% and greatly improved by 3.87 times, respectively, when the H2O2:MLSS dosage ratio was decreased from 1.0 to 0.2, resulting in nearly the same release rate of soluble chemical oxygen demand in the microwave-H2O2 process without optimization at H2O2:MLSS ratio of 0.5.  相似文献   

8.
Methane is produced in a microbial electrosynthesis system (MES) without organic substrates. However, a relatively high applied voltage is required for the bioelectrical reactions. In this study, we demonstrated that electrotrophic methane production at the biocathode was achieved even at a very low voltage of 0.1 V in an MES, in which abiotic HS oxidized to SO42− at the anodic carbon-cloth surface coated with platinum powder. In addition, microbial community analysis revealed the most probable pathway for methane production from electrons. First, electrotrophic H2 was produced by syntrophic bacteria, such as Syntrophorhabdus, Syntrophobacter, Syntrophus, Leptolinea, and Aminicenantales, with the direct acceptance of electrons at the biocathode. Subsequently, most of the produced H2 was converted to acetate by homoacetogens, such as Clostridium and Spirochaeta 2. In conclusion, the majority of the methane was indirectly produced by a large population of acetoclastic methanogens, namely Methanosaeta, via acetate. Further, hydrogenotrophic methanogens, including Methanobacterium and Methanolinea, produced methane via H2.  相似文献   

9.
PM2.5 concentrations have dramatically reduced in key regions of China during the period 2013–2017, while O3 has increased. Hence there is an urgent demand to develop a synergetic regional PM2.5 and O3 control strategy. This study develops an emission-to-concentration response surface model and proposes a synergetic pathway for PM2.5 and O3 control in the Yangtze River Delta (YRD) based on the framework of the Air Benefit and Cost and Attainment Assessment System (ABaCAS). Results suggest that the regional emissions of NOx, SO2, NH3, VOCs (volatile organic compounds) and primary PM2.5 should be reduced by 18%, 23%, 14%, 17% and 33% compared with 2017 to achieve 25% and 5% decreases of PM2.5 and O3 in 2025, and that the emission reduction ratios will need to be 50%, 26%, 28%, 28% and 55% to attain the National Ambient Air Quality Standard. To effectively reduce the O3 pollution in the central and eastern YRD, VOCs controls need to be strengthened to reduce O3 by 5%, and then NOx reduction should be accelerated for air quality attainment. Meanwhile, control of primary PM2.5 emissions shall be prioritized to address the severe PM2.5 pollution in the northern YRD. For most cities in the YRD, the VOCs emission reduction ratio should be higher than that for NOx in Spring and Autumn. NOx control should be increased in summer rather than winter when a strong VOC-limited regime occurs. Besides, regarding the emission control of industrial processes, on-road vehicle and residential sources shall be prioritized and the joint control area should be enlarged to include Shandong, Jiangxi and Hubei Province for effective O3 control.  相似文献   

10.
Tri(2-chloroethyl) phosphate (TCEP) with the initial concentration of 5 mg/L was degraded by UV/H2O2 oxidation process. The removal rate of TCEP in the UV/H2O2 system was 89.1% with the production of Cl? and PO43? of 0.23 and 0.64 mg/L. The removal rate of total organic carbon of the reaction was 48.8% and the pH reached 3.3 after the reaction. The oxidative degradation process of TCEP in the UV/H2O2 system obeyed the first order kinetic reaction with the apparent rate constant of 0.0025 min?1 (R2=0.9788). The intermediate products were isolated and identified by gas chromatography-mass spectrometer. The addition reaction of HO? and H2O and the oxidation reaction with H2O2 were found during the degradation pathway of 5 mg/L TCEP in the UV/H2O2 system. For the first time, environment risk was estimated via the “ecological structure activity relationships” program and acute and chronic toxicity changes of intermediate products were pointed out. The luminescence inhibition rate of photobacterium was used to evaluate the acute toxicity of intermediate products. The results showed that the toxicity of the intermediate products increased with the increase of reaction time, which may be due to the production of chlorine compounds. Some measures should be introduced to the UV/H2O2 system to remove the highly toxic Cl-containing compounds, such as a nanofiltration or reverse osmosis unit.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

18.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号