首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Nitrated polycyclic aromatic hydrocarbons (NPAHs) have toxic potentials that are higher than those of their corresponding parent polycyclic aromatic hydrocarbons (PAHs) and thus have received increasing attention in recent years. In this study, the occurrence, distribution, source, and human health risk assessment of 15 NPAHs and 16 PAHs were investigated in the surface water from 20 sampling sites of Lake Taihu during the dry, normal, and flood seasons of 2018. The ΣPAH concentrations ranged from 255 to 7298 ng/L and the ΣNPAH concentrations ranged from not-detected (ND) to 212 ng/L. Among the target analytes, 2-nitrofluorene (2-nFlu) was the predominant NPAH, with a detection frequency ranging from 85% to 90% and a maximum concentration of 56.2 ng/L. The three-ringed and four-ringed NPAHs and PAHs comprised the majority of the detected compounds. In terms of seasonal variation, the highest levels of the ΣNPAHs and ΣPAHs were in the dry season and flood season, respectively. Diagnostic ratio analysis indicated that the prime source of NPAHs was direct combustion, whereas in the case of PAHs the contribution was predominantly from a mixed pattern including pollution from unburned petroleum and petroleum combustion. The human health risk of NPAHs and PAHs was evaluated using a lifetime carcinogenic risk assessment model. The carcinogenic risk level of the targets ranged from 2.09 × 10?7 to 5.75 × 10?5 and some surface water samples posed a potential health risk.  相似文献   

2.
Volatile organic compounds (VOCs) are major contributors to air pollution. Based on the emission characteristics of 99 VOCs that daily measured at 10 am in winter from 15 December 2015 to 17 January 2016 and in summer from 21 July to 25 August 2016 in Beijing, the environmental impact and health risk of VOC were assessed. In the winter polluted days, the secondary organic aerosol formation potential (SOAP) of VOC (199.70 ± 15.05 μg/m3) was significantly higher than that on other days. And aromatics were the primary contributor (98.03%) to the SOAP during the observation period. Additionally, the result of the ozone formation potential (OFP) showed that ethylene contributed the most to OFP in winter (26.00% and 27.64% on the normal and polluted days). In summer, however, acetaldehyde was the primary contributor to OFP (22.00% and 21.61% on the normal and polluted days). Simultaneously, study showed that hazard ratios and lifetime cancer risk values of acrolein, chloroform, benzene, 1,2-dichloroethane, acetaldehyde and 1,3-butadiene exceeded the thresholds established by USEPA, thereby presenting a health risk to the residents. Besides, the ratio of toluene-to-benzene indicated that vehicle exhausts were the main source of VOC pollution in Beijing. The ratio of m-/p-xylene-to-ethylbenzene demonstrated that there were more prominent atmospheric photochemical reactions in summer than that in winter. Finally, according to the potential source contribution function (PSCF) results, compared with local pollution sources, the spread of pollution from long-distance VOCs had a greater impact on Beijing.  相似文献   

3.
Acetochlor is a widely used herbicide in agricultural production. Studies have shown that acetochlor has obvious environmental hormone effects, and long-term exposure may pose a threat to human health. To quantify the hazards of acetochlor in drinking water, a health risk assessment of acetochlor was conducted in major cities of China based on the data of acetochlor residue concentrations in drinking water. The approach of the Species Sensitivity Distributions (SSD) method is used to extrapolate from animal testing data to reflect worst case human toxicity. Results show that hazard quotients related to acetochlor residues in drinking water for different age groups range from 1.94 × 10?4 to 6.13 × 10?4, so, there are no indication of human risk. Compared to the total estimated hazard quotient from oral intake of acetochlor, the chronic exposure imputed to acetochlor residues in drinking water in China accounts for 0.4%. This paper recommends 0.02 mg/L to be the maximum acetochlor residue concentration level in drinking water and source water criteria.  相似文献   

4.
Volatile organic compounds (VOCs), important precursors of ozone (O3) and fine particulate matter (PM2.5), are the key to curb the momentum of O3 growth and further reducing PM2.5 in China. Container manufacturing industry is one of the major VOC emitters, and more than 96% containers of the world are produced in China, with the annual usage of coatings of over 200,000 tons in recent years. This is the first research on the emission characteristics of VOCs in Chinese container manufacturing industry, including concentration and ozone formation potential (OFP) of each species. The result shows that the largest amounts of VOCs are emitted during the pretreatment process, followed by the paint mixing process and primer painting process, and finally other sprays process. The average VOC concentrations in the workshops, the exhausts before treatment and the exhausts after treatment are ranging from 82.67–797.46 , 170–1,812.65 , 66.20–349.63 mg/m3, respectively. Benzenes, alcohols and ethers are main species, which contribute more than 90% OFP together. Based on the emission characteristics of VOCs and the technical feasibility, it is recommended to set the emission limit in standard of benzene to 1.0 mg/m3, toluene to 10 mg/m3, xylene to 20 mg/m3, benzenes to 40 mg/m3, alcohols and ethers to 50 mg/m3, and VOCs to 100 mg/m3. The study reports the industry emission characteristics and discusses the standard limits, which is a powerful support to promote VOCs emission reduction, and to promote the coordinated control of PM2.5 and O3 pollution.  相似文献   

5.
Characteristics of atmospheric VOCs (volatile organic compounds) have been extensively studied in megacities in China, however, they are scarcely investigated in medium/small-sized cities in North China Plain (NCP). A comprehensive research on possible sources of VOCs was conducted in a medium-sized city of NCP, from May to September 2019. A total of 143 canister samples of 8 sites in Xuchang city were collected, and 57 VOC species were detected. The average VOC concentrations were 42.6 ± 31.6 μg/m3, with 53.7 ± 31.0 μg/m3 and 32.1 ± 27. 8 μg/m3, in the morning and afternoon, respectively. Alkenes and aromatics contributed 80% of the total ozone formation potential (OFP). Aromatics accounted for more than 95% of secondary organic aerosol potential (SOAP). VOCs were dominated by the local emission with significant transport from the southeast direction. PMF analysis extracted 6 sources, which were combustion (33.1%), LPG usage (19.3%), vehicular exhaust & fuel evaporation (15.8%), solvent usage (15.2%), industrial (9.11%) and biogenic (7.51%), respectively and they contributed 33.4%, 17.6%, 12.9%, 18.6%, 9.28% and 8.22% to the OFP, respectively. Combustion and LPG usage were the dominant VOC sources; and combustion, solvent usage and LPG usage were the main sources of OFP in Xuchang city, which were different to megacities in China with a high contribution from vehicular exhaust, solvent usage and industry, suggesting specific control strategies on VOCs need to be implemented in medium-sized city such as Xuchang city.  相似文献   

6.
Zhengzhou is one of the most haze-polluted cities in Central China with high organic carbon emission, which accounts for 15%-20% of particulate matter (PM2.5) in winter and causes significantly adverse health effects. Volatile organic compounds (VOCs) are the precursors of secondary PM2.5 and O3 formation. An investigation of characteristics, sources and health risks assessment of VOCs was carried out at the urban area of Zhengzhou from 1st to 31st December, 2019. The mean concentrations of total detected VOCs were 48.8 ± 23.0 ppbv. Alkanes (22.0 ± 10.4 ppbv), halocarbons (8.1 ± 3.9 ppbv) and aromatics (6.5 ± 3.9 ppbv) were the predominant VOC species, followed by alkenes (5.1 ± 3.3 ppbv), oxygenated VOCs (3.6 ± 1.8 ppbv), alkyne (3.5 ± 1.9, ppbv) and sulfide (0.5 ± 0.9 ppbv). The Positive Matrix Factorization model was used to identify and apportion VOCs sources. Five major sources of VOCs were identified as vehicular exhaust, industrial processes, combustion, fuel evaporation, and solvent use. The carcinogenic and non-carcinogenic risk values of species were calculated. The carcinogenic and non-carcinogenic risks of almost all air toxics increased during haze days. The total non-carcinogenic risks exceeded the acceptable ranges. Most VOC species posed no non-carcinogenic risk during three haze events. The carcinogenic risks of chloroform, 1,2-dichloroethane, 1,2-dibromoethane, benzyl chloride, hexachloro-1,3-butadiene, benzene and naphthalene were above the acceptable level (1.0 × 10?6) but below the tolerable risk level (1.0 × 10?4). Industrial emission was the major contributor to non-carcinogenic, and solvent use was the major contributor to carcinogenic risks.  相似文献   

7.
Ten nitrated polycyclic aromatic hydrocarbons (nPAHs) and 4 oxygenated polycyclic aromatic hydrocarbons (oPAHs) in fine particulate matter (PM2.5) samples from Mount Tai were analyzed during summer (June to August), 2015. During the observation campaign, the mean concentration of total nPAHs and oPAHs was 31.62 pg/m3 and 0.15 ng/m3, respectively. Two of the monitored compounds, namely 9-nitro-anthracene (9N-ANT) (6.86 pg/m3) and 9-fluorenone (9FO) (0.05 ng/m3) were the predominant compounds of nPAHs and oPAHs, respectively. The potential source and long-range transportation of nPAHs and oPAHs were investigated by the positive matrix factorization (PMF) method and the potential source contribution function (PSCF) methods. The results revealed that biomass/coal burning, gasoline vehicle emission, diesel vehicle emission and secondary formation were the dominant sources of nPAHs and oPAHs, which were mainly from Henan province and Beijing-Tianjin-Hebei region and Bohai sea. The incremental life cancer risk (ILCR) values were calculated to evaluate the exposure risk of nPAHs and oPAHs for three group people (infant, children and adult), and the values of ILCR were 7.02 × 10?10, 3.49 × 10?9 and 1.41 × 10?8 for infant, children and adults, respectively. All these values were lower than the standard of EPA (Environmental Protection Agency) (<10?6), indicating acceptable health risk of nPAHs and oPAHs.  相似文献   

8.
Coking industry is an important volatile organic compounds (VOCs) emission source in China, however, detailed information on VOCs emissions is lacking. Therefore, we selected a typical mechanized coking plant and collected air samples according to the Emission Standard of Pollutants for Coking Chemical Industry (GB16171-2012). Using gas chromatography-mass spectrometry method, we analyzed the VOCs in the air samples, and applied maximum increment reactivity (MIR) rule to estimate ozone formation potential (OFP) of the VOCs emitted from the coke production. More than 90 VOCs species were detected from the coking plant, including alkanes, alkenes, alkynes, aromatic hydrocarbons, halogenated hydrocarbons and oxygenated VOCs. The concentrations of VOCs (ρ(VOCs)) generated at different stages of the coking process are significantly different. ρ(VOCs) from coke oven chimney had the highest concentration (87.1 mg/m3), followed by coke pushing (4.0 mg/m3), coal charging (3.3 mg/m3) and coke oven tops (1.1 mg/m3). VOCs species emitted from the coke production processes were dominated by alkanes and alkenes, but the composition proportions were different at the different stages. Alkenes were the most abundant emission species in flue gases of the coke oven chimney accounting for up to 66% of the total VOCs, while the VOCs emissions from coke pushing and coal charging were dominated by alkanes (36% and 42%, respectively), and the alkanes and alkenes emitted from coke oven top were similar (31% and 29%, respectively). Based on above results, reduction of VOCs emissions from coke oven chimney flue gases is suggested to be an effective measure, especially for alkenes.  相似文献   

9.
Ambient benzene homologues were measured at a site in the northeastern urban area of Beijing, China, from August 24 to September 4, 2012 by SUMMA canister sampling followed by laboratory determination using cryogenic cold trap pre-concentration-GC-MS/FID, and their health risks were also assessed. Daily total benzene homologues ranged from 0.99 to 49.71 μg/m3with an average of 11.98 μg/m3. Benzene homologues showed higher concentrations in the morning and evening than that at noontime. Comparison with previous studies revealed a trend of decrease for ambient benzene homologues probably due to the efective emission control in Beijing in recent years. Vehicular exhaust was the main source while volatilization of paints and solvents also made substantial contributions. Health risk assessment showed that BTEX(benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) and styrene had no appreciable adverse non-cancer health risks for the exposed population, while benzene has potential cancer risk of 1.34E-05. Available data from cities in China all implied that benzene imposes relatively higher cancer risk on the exposed populations and therefore strict control measures should be taken to further lower ambient benzene levels in China.  相似文献   

10.
Improving our understanding of air pollutant emissions from the asphalt industry is critical for the development and implementation of pollution control policies. In this study, the spatial distribution of potential maximum emissions of volatile organic compounds (VOCs) in the complete life cycle of asphalt mixtures, as well as the particulate matter (PM), asphalt fume, nonmethane hydrocarbons (NMHCs), VOCs, and benzoapyrene (BaP) emissions from typical processes (e.g., asphalt and concrete mixing stations, asphalt heating boilers, and asphalt storage tanks) in asphalt mixing plants, were determined in Beijing in 2017. The results indicated that the potential maximum emissions of VOCs in the complete life cycle of asphalt mixtures were 18,001 ton, with a large contribution from the districts of Daxing, Changping, and Tongzhou. The total emissions of PM, asphalt fume, NMHC, VOCs, and BaP from asphalt mixing plants were 3.1, 12.6, 3.1, 23.5, and 1.9 × 10?3 ton, respectively. The emissions of PM from asphalt and concrete mixing stations contributed the most to the total emissions. The asphalt storage tank was the dominant emission source of VOCs, accounting for 96.1% of the total VOCs emissions in asphalt mixing plants, followed by asphalt heating boilers. The districts of Daxing, Changping, and Shunyi were the dominant regions for the emissions of PM, asphalt fume, NMHC, and BaP, while the districts of Shunyi, Tongzhou, and Changping contributed the most emissions of VOCs.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

14.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

15.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

16.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

17.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

18.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

19.
Common silver barb,Puntius gonionotus,exposed to the nominal concentration of 0.06 mg/L Cd for 60 d,were assessed for histopathological alterations(gills,liver and kidney),metal accumulation,and metallothionein(MT)mRNA expression.Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae,vacuolization in hepatocytes,and prominent tubular and glomerular damage in the kidney.In addition,kidney accumulated the highest content of cadmium,more than gills and liver.Expression of MT mRNA was increased in both liver and kidney of treated fish.Hepatic MT levels remained high after fish were removed to Cd-free water.In contrast,MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water.The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.  相似文献   

20.
Seed induces and promotes the crystallization of calcium phosphate, and acts as carrier of the recovered phosphorus (P). In order to select suitable seed for P recovery from wastewater, three seeds including Apatite (AP), Juraperle (JP) and phosphate-modified Juraperle (M-JP) were tested and compared. Batch and fixed-bed column experiments of seeded crystallization of calcium phosphate were undertaken by using synthetic wastewater with 10 mg/L P phosphate. It shows that AP has bad enduring property in the crystallization process, while JP has better performance for multiple uses, and M-JP is a hopeful seed for P recovery by crystallization of calcium phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号