首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
At present, the high re-combination rate of photogenerated carriers and the low redox capability of the photocatalyst are two factors that severely limit the improvement of photocatalytic performance. Herein, a dual Z-scheme photocatalyst bismuthzirconate/graphitic carbon nitride/silver phosphate (Bi2Zr2O7/g-C3N4/Ag3PO4 (BCA)) was synthesized using a co-precipitation method, and a dual Z-scheme heterojunction photocatalytic system was established to decrease the high re-combination rate of photogenerated carriers and consequently improve the photocatalytic performance. The re-combination of electron-hole pairs (e and h+) in the valence band (VB) of g-C3N4 increases the redox potential of e and h+, leading to significant improvements in the redox capability of the photocatalyst and the efficiency of e-h+ separation. As a photosensitizer, Ag3PO4 can enhance the visible light absorption capacity of the photocatalyst. The prepared photocatalyst showed strong stability, which was attributed to the efficient suppression of photo-corrosion of Ag3PO4 by transferring the e to the VB of g-C3N4. Tetracycline was degraded efficiently by BCA-10% (the BCA with 10 wt.% of AgPO4) under visible light, and the degradation efficiency was up to 86.2%. This study experimentally suggested that the BCA photocatalyst has broad application prospects in removing antibiotic pollution.  相似文献   

2.
The graphic carbon nitride/polyaniline (g-C3N4/PANI) hybrid composites were successfully synthesized by a facile in situ polymerization process under ice water bath. The photocatalytic activities of the g-C3N4/PANI composites were evaluated by using oxytetracycline (OTC) as model pollutants. The optimal g-C3N4/PANI composite (5%PANI: the g-C3N4/PANI hybrid with 5 wt.% of PANI) showed an enhancement degradation rate of 5-fold compared to that of conventional g-C3N4 under simulated-sunlight irradiation. In addition, the 5%PANI demonstrate significantly photocatalytic evolution H2 rate (163.2 μmol/(g?hr)) under the visible light irradiation. Furthermore, based on the results of optical performance and electrochemical testing, a possible mechanism was proposed, indicating that the incorporation of PANI into the traditional g-C3N4 can effectively tune the electronic structures, improve the photo-generated electrons-holes separation and enhance extensive absorption of visible light. Such a g-C3N4/PANI hybrid nanocomposites could be envisaged to possess great potentials in practical wastewater treatment and water splitting.  相似文献   

3.
In order to enhance the removal performance of graphitic carbon nitride (g-C3N4) on organic pollutant, a simultaneous process of adsorption and photocatalysis was achieved via the compounding of biochar and g-C3N4. In this study, g-C3N4 was obtained by a condensation reaction of melamine at 550°C. Then the g-C3N4/biochar composites were synthesized by ball milling biochar and g-C3N4 together, which was considered as a simple, economical, and green strategy. The characterization of resulting g-C3N4/biochar suggested that biochar and g-C3N4 achieved effective linkage. The adsorption and photocatalytic performance of the composites were evaluated with enrofloxacin (EFA) as a model pollutant. The result showed that all the g-C3N4/biochar composites displayed higher adsorption and photocatalytic performance to EFA than that of pure g-C3N4. The 50% g-C3N4/biochar performed best and removed 45.2% and 81.1% of EFA (10 mg/L) under darkness and light with a dosage of 1 mg/mL, while g-C3N4 were 19.0% and 27.3%, respectively. Besides, 50% g-C3N4/biochar showed the highest total organic carbon (TOC) removal efficiency (65.9%). Radical trapping experiments suggested that superoxide radical (?O2?) and hole (h+) were the main active species in the photocatalytic process. After 4 cycles, the composite still exhibited activity for catalytic removal of EFA.  相似文献   

4.
Frequent occurrence of harmful algal blooms has already threatened aquatic life and human health. In the present study, floating BiOCl0.6I0.4/ZnO photocatalyst was synthesized in situ by water bath method, and and applied in inactivation of Microcystis aeruginosa under visible light. The composition, morphology, chemical states, optical properties of the photocatalyst were also characterized. The results showed that BiOCl0.6I0.4 exhibited laminated nanosheet structure with regular shape, and the light response range of the composite BZ/EP-3 (BiOCl0.6I0.4/ZnO/EP-3) was tuned from 582 to 638 nm. The results of photocatalytic experiments indicated that BZ/EP-3 composite had stronger photocatalytic activity than a single BiOCl0.6I0.4 and ZnO, and the removal rate of chlorophyll a was 89.28% after 6 hr of photocatalytic reaction. The photosynthetic system was destroyed and cell membrane of algae ruptured under photocatalysis, resulting in the decrease of phycobiliprotein components and the release of a large number of ions (K+, Ca2+ and Mg2+). Furthermore, active species trapping experiment determined that holes (h+) and superoxide radicals (·O2) were the main active substance for the inactivation of algae, and the p-n mechanism of photocatalyst was proposed. Overall, BZ/EP-3 showed excellent algal removal ability under visible light, providing fundamental theories for practical algae pollution control.  相似文献   

5.
Photocatalytic degradation was considered as a best strategy for the removal of antibiotic drug pollutants from wastewater. The photocatalyst of ABC (Ag2CO3/BiOBr/CdS) composite synthesized by hydrothermal and precipitation method. The ABC composite used to investigate the degradation activity of tetracycline (TC) under visible light irradiation. The physicochemical characterization methods (e.g. scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), ultraviolet visible spectroscopy (UV), photoluminescence (PL) and time resolved photoluminescence (TRPL) clearly indicate that the composite has been construct successfully that enhances the widened visible light absorption, induces charge transfer and separation efficiency of electron – hole pairs. The photocatalytic activity of all samples was examined through photodegradation of tetracycline in aqueous medium. The photocatalytic degradation rate of ABC catalyst could eliminate 98.79% of TC in 70 min, which is about 1.5 times that of Ag2CO3, 1.28 times that of BiOBr and 1.1 times that of BC catalyst, respectively. The role of operation parameters like, TC concentration, catalyst dosage and initial pH on TC degradation activity were studied. Quenching experiment was demonstrated that ·OH and O2· were played a key role during the photocatalysis process that was evidently proved in electron paramagnetic resonance (EPR) experiment. In addition, the catalyst showed good activity perceived in reusability and stability test due to the synergistic effect between its components. The mechanism of degradation of TC in ABC composite was proposed based on the detailed analysis. The current study will give an efficient and recyclable photocatalyst for antibiotic aqueous pollutant removal.  相似文献   

6.
In this work, a novel dual Z-scheme Bi2WO6/g-C3N4/black phosphorus quantum dots (Bi2WO6/g-C3N4/BPQDs) composites were fabricated and utilized towards photocatalytic degradation of bisphenol A (BPA) under visible-light irradiation. Optimizing the content of g-C3N4 and BPQDs in Bi2WO6/g-C3N4/BPQDs composites to a suitable mass ratio can enhance the visible-light harvesting capacity and increase the charge separation efficiency and the transfer rate of excited-state electrons and holes, resulting in much higher photocatalytic activity for BPA degradation (95.6%, at 20 mg/L in 120 min) than that of Bi2WO6 (63.7%), g-C3N4 (25.0%), BPQDs (8.5%), and Bi2WO6/g-C3N4 (79.6%), respectively. Radical trapping experiments indicated that photogenerated holes (h+) and superoxide radicals (•O2) played crucial roles in photocatalytic BPA degradation. Further, the possible degradation pathway and photocatalytic mechanism was proposed by analyzing the BPA intermediates. This work also demonstrated that the Bi2WO6/g-C3N4/BPQDs as effective photocatalysts was stable and have promising potential to remove environmental contaminants from real water samples.  相似文献   

7.
The degradation of pharmaceutical micropollutants is an intensifying environmental problem and synthesis of efficient photocatalysts for this purpose is one of the foremost challenges worldwide. Therefore, this study was conducted to develop novel plasmonic Ag/Ag2O/BiVO4 nanocomposite photocatalysts by simple precipitation and thermal decomposition methods, which could exhibit higher photocatalytic activity for mineralized pharmaceutical micropollutants. Among the different treatments, the best performance was observed for the Ag/Ag2O/BiVO4 nanocomposites (5 wt.%; 10 min's visible light irradiation) which exhibited 6.57 times higher photodegradation rate than the pure BiVO4. Further, the effects of different influencing factors on the photodegradation system of tetracycline hydrochloride (TC-HCl) were investigated and the feasibility for its practical application was explored through the specific light sources, water source and cycle experiments. The mechanistic study demonstrated that the photogenerated holes (h+), superoxide radicals (?O2?) and hydroxyl radicals (?OH) participated in TC-HCl removal process, which is different from the pure BiVO4 reaction system. Hence, the present work can provide a new approach for the formation of novel plasmonic photocatalysts with high photoactivity and can act as effective practical application for environmental remediation.  相似文献   

8.
Pyrite is the most abundant sulfide semiconductor mineral with excellent optical properties. However, few reports have investigated its photocatalytic activity because of the low photogenerated carrier separation efficiency. In this work, a Z-scheme FeS2/Fe2O3 composite photocatalyst was fabricated in situ via structural transformation of pyrite through heat treatment. A remarkably enhanced photocatalytic performance was observed over the FeS2/Fe2O3 composite photocatalyst. Compared with the pristine pyrite, the degradation efficiency of carbamazepine (CBZ) reached 65% at the added hexavalent chromium (Cr(Ⅵ)) concentration of 20 mg/L and the Cr(Ⅵ) was nearly completely reduced in the mixed system using FeS2/Fe2O3 within 30 min under simulated solar light irradiation. The enhanced photocatalytic activity can be attributed to the efficient separation and transfer of photogenerated carriers in the FeS2/Fe2O3 composite photocatalyst. This facilitated the generation of ?OH, hole (h+) and ?O2? species, which participated in the photocatalytic reaction with CBZ. Based on the measurement of the active species and electric properties, a Z-scheme electron transfer pathway was proposed for the FeS2/Fe2O3 composite photocatalyst. This work broadens the application potential of pyrite in environmental remediation.  相似文献   

9.
Graphite carbon nitride has many excellent properties as a two-dimensional semiconductor material so that it has a wide application prospect in the field of photocatalysis. However, the traditional problems such as high recombination rate of photogenerated carriers limit its application. In this work, we introduce nitrogen deficiency into g-C3N4 to solve this problem a simple and safe in-situ reduction method. g-C3N4/CaCO3 was obtained by a simple and safe one-step calcination method with industrial-grade micron particles CaCO3. Cyano group modification was in-situ reduced during the thermal polymerization process, which would change the internal electronic structure of g-C3N4. The successful combination of g-C3N4 and CaCO3 and the introduction of cyanide have been proved by Fourier transform infrared spectroscopy and X-ray photoelectron spectrometer. The formation of the cyano group, an electron-absorbing group, promotes the effective separation of photogenic electron hole pairs and inhibits the recombination of photogenic carriers. These advantages result in the generation of more •O2 and 1O2 in the catalytic system, which increases the photocatalytic efficiency of nicotine degradation by ten times. Furthermore, the degradation process of nicotine has been studied in this work to provide a basis for the degradation of nicotine organic pollutants in the air.  相似文献   

10.
Dielectric barrier discharge (DBD) plasma applied as surface treatment technology was employed for the modification of Ag2O and graphitic carbon nitride (g-C3N4) powders. Subsequently, the pretreated powders were sequentially loaded onto TiO2 nanorods (TiO2-NRs) via electro-deposition, followed by calcination at N2 atmosphere. The results indicated that at the optimal plasma discharge time of 5 min for modification of g-C3N4 and Ag2O, photocurrent density of ternary composite was 6 times to bare TiO2-NRs under UV-visible light irradiation. Phenol was degraded by using DBD plasma-modified g-C3N4/Ag2O/TiO2-NRs electrode to analyze the photoelectrocatalytic performance. The removal rate of phenol for g-C3N4-5/Ag2O-5/TiO2-NRs electrode was about 3.07 times to that for TiO2-NRs electrode. During active species scavengers’ analysis, superoxide radicals and hydroxyl radicals were the main oxidation active species for pollutants degradation. A possible electron-hole separation and transfer mechanism of ternary composite with high photoelectrocatalytic performance was proposed.  相似文献   

11.
二英会降低人类的免疫力,影响人体和神经发育;氮氧化物则会对人体的各项脏器和血液组织有严重危害,还会破坏臭氧层,加速酸雨的形成.商业钒钛催化剂既能脱除氮氧化物又能催化分解二英(邻二氯苯作为模拟物),二英活性温度区为200~300℃,而脱硝活性温度为300~400℃.研究了VOx/TiO2、MnOx/TiO2以及VOx-MnOx/TiO2等催化剂在200~300℃脱硝、脱除二英的情况.结果表明,在VOx/TiO2催化剂中掺入MnOx促进脱硝活性温度区间由300~400℃往200~300℃偏移,当MnOx和VOx摩尔比为3:1时,催化剂在250℃脱硝和脱除二英的效果最好,催化NO和邻二氯苯效率分别为92.0%和89.0%.原位红外漫反射光谱研究表明,1V3M/T催化剂表面的脱硝反应在250℃遵循L-H机理,—NH2、NxHyOz、单齿亚硝酸盐和二齿硝酸盐是主要的反应中间体.  相似文献   

12.
孙红  全燮  张耀斌  赵雅芝 《环境科学》2008,29(6):1743-1748
采用溶胶-凝胶法和浸渍法制备了Pd/CeZr/TiO2Al2O3蜂窝状金属丝网催化剂,并将其应用于在富氧条件下以丙烯选择催化还原NOx的研究.利用扫描电镜(SEM)分析了钛酸四丁酯的含量以及涂敷次数对TiO2涂层的影响,系统地考察了Pd含量、氧气浓度和空速对蜂窝状金属丝网催化剂催化性能的影响.实验结果表明,采用钛酸四丁酯的含量为20.0%的溶胶,涂敷2次,可以在金属丝网载体上氧化铝涂层表面获得均匀、无皲裂的TiO2涂层;Pd含量在0.23%~1.06%的范围内, NOx的转化率随Pd含量的增加而减小, Pd含量为0.23%时, NOx表现最高的NOx转化率;反应气体中氧气浓度从1.5%增加到6.0%, NOx的转化率随氧气浓度的增加而增大,当氧气浓度高于6.0%, NOx的转化率则随氧气浓度的增加而迅速减小; NOx的转化率随着空速的增加而降低,在高温条件下空速对转化率的影响要大于在低温条件下.  相似文献   

13.
14.
石勇  李橙  黄磊  熊巍  肇启东  孙健恒  丁越 《中国环境科学》2022,42(11):5080-5087
采用溶剂热法和微波法合成了不同比例的Tix-Ni1-x-MOFs材料,并用于以CO为还原剂的选择性催化脱硝反应。结果表明,双金属Tix-Ni1-x-MOFs的NO还原率显著高于单金属Ni-MOF,且反应温度窗口更宽,其中,Ti0.2-Ni0.8-MOF表现出最佳的脱硝效率,在200~400oC温度范围达到100%的转化率。通过XRD,FT-IR,SEM,TGA,XPS,N2吸脱附等表征手段发现,Ti掺杂Ni-MOF后有利于改善原子分散性,Ti、Ni间金属的相互作用有利于产生丰富的高效Ni-O-Ti位点,加强Ni2++Ti4+↔Ni3++Ti3+氧化还原循环,从而明显提高了NO+CO催化反应性能。与溶剂热法相比,微波法制备Ti0.2-Ni0.8-MOF具有合成效率高、结晶度好、晶粒细小均匀的优势,并进一步提高了其低温脱硝效果。  相似文献   

15.
FeOx-CeO2 mixed oxides with increasing Fe/(Ce+Fe) atomic ratio (1-20 mol%) were prepared by sol-gel method and characterized by X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) and Hydrogen temperature-programmed reduction (H2-TPR) techniques. The dynamic oxygen storage capacity (DOSC) was investigated by mass spectrometry with CO/O2 transient pulses. The powder XRD data following Rietveld refinement revealed that the solubility limit of iron oxides in the CeO2 was 5 mol% based on Fe/(Ce+Fe). The lattice parameters experienced a decrease followed by an increase due to the influence of the maximum solubility limit of iron oxides in the CeO2. TPR analysis revealed that Fe introduction into ceria strongly modified the textual and structural properties, which influenced the oxygen handling properties. DOSC results revealed that Ce-based materials containing Fe oxides with multiple valences contribute to the majority of DOSC. The kinetic analysis indicated that the calculated apparent kinetic parameters obey the compensation effect. The three-way catalytic performance for Pd-only catalysts based on the Fe doping support exhibited the redundant iron species separated out of the CeO2 and interacted with the ceria and Pd species on the surface, which seriously influenced the catalytic properties, especially after hydrothermal aging treatment.  相似文献   

16.
Fe-MnOx-CeO2/ZrO2低温催化还原NO性能研究   总被引:2,自引:2,他引:0  
刘荣  杨志琴 《环境科学》2012,33(6):1964-1970
以纳米ZrO2为载体,用浸渍法制备出Fe-MnOx-CeO2/ZrO2催化剂,考察了活性组分配比和助剂负载量对催化剂低温NH3选择性催化还原NO活性的影响,并对催化剂进行了XRD、SEM、EDS和BET表征;探讨了温度、H2O和SO2对Fe-MnOx-CeO2/ZrO2催化剂低温下NH3选择性催化还原NO的影响,结果表明,无SO2和H2O条件下,8%Fe-10%MnOx-CeO2/ZrO2催化剂具有良好的催化活性和稳定性.120℃时,催化剂的脱硝效率为85.23%,当温度升至180℃时,脱硝效率可达到92.0%.SO2和H2O共存条件下,催化剂易失活,采用傅立叶变换红外光谱对各反应阶段的催化剂进行了表征,对其失活机制进行深入研究,结果表明,催化剂失活的主要原因是催化剂表面硫酸铵盐的沉积和催化剂本身活性成分的硫酸盐化.  相似文献   

17.
采用溶剂热法制备La1-xKxMnO3(x=0, 0.10, 0.15, 0.20, 0.25)钙钛矿型复合金属氧化物催化剂;通过XRD、FT-IR、SEM、H2-TPR、XPS、NO-TPD等手段对催化剂的物相组成、表面形貌、氧化还原性能等进行了表征;在常压固定床微型反应装置中评价催化剂同时消除NO和碳烟催化性能.结果表明,制备的La1-xKxMnO3催化剂均具有钙钛矿结构;K部分取代La-Mn钙钛矿结构中La后,颗粒结构得以改善,部分Mn3+价态升高为Mn4+,形成较多氧空位和Mn4+,提高氧化还原性能和吸附NO性能.活性评价结果表明,La0.80K0.20MnO3催化剂表现出较好的同时消除NO和碳烟催化性能,NO最大转化率(Xmax NO)和对应反应温度(Tmax NO)分别为46.5%和436℃,碳烟起燃温度(Tig)、CO2浓度峰值温度(Tmax CO2)和生成CO2选择性(Smax CO2)分别为341℃、454℃和98.8%.  相似文献   

18.
目的 解决硬质合金刀具高速干切削难加工材料面临效率低、寿命短的难题,提升刀具涂层的耐热能力,在AlCrSiN涂层中周期性植入AlCrON热屏障层,并在其两侧沉积AlCrN层进行包夹,改善含氧层的韧性,既能保持涂层刀具较高的强度,又能改善其耐热能力.方法 采用全自动电弧离子镀膜机,研制具有不同调制周期的AlCrSiN/A...  相似文献   

19.
分析了湿热环境对装备的影响及机理,介绍了美国军标810C/D/E/F各版本中湿热试验程序的特点,分析了这些程序的变化过程及其对GJB 150/150A湿热试验程序的影响,指出了810F/和GJB150A的湿热试验的目的仅是用以加速发现装备湿热问题,不再模拟寿命期遇到的复杂的温、湿度环境,实际上是一种加速试验。  相似文献   

20.
将人工智能应用于催化臭氧氧化催化剂SrFexZr1-xO3的开发过程,采用共沉淀法制备了50种不同配方的催化剂,考察聚乙二醇(PEG)投加量、煅烧时间、老化时间、氨水投加量和铁掺杂量对SrFexZr1-xO3催化剂催化臭氧降解间甲酚反应活性的影响.同时,利用人工神经网络(ANN)和响应面(RSM)对催化剂合成条件与TOC去除率和间甲酚转化率的关系进行拟合,训练集中ANN的R2值分别为0.91和0.97,高于RSM的R2值0.35和0.41;在4组测试集上ANN的均方误差(MSE)分别为9.87和17.67,远小于RSM的23.89和28.87.结果表明,ANN模型对催化剂制备过程的复杂体系具有更好的拟合和泛化能力.在ANN训练好的模型中通过枚举法寻找最优合成条件为:PEG投加量为19.00%,煅烧时间为1.25 h,老化时间为26.50 h,氨水投加量为6.21 mL,铁掺杂量为3.37%,所得催化剂为SrFe0.13Zr0.87O3-B.最佳反应条件下,间甲酚转化率和TOC去除率分别达到98.52%和17.21%,优于空白组的73.46%和1.86%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号