首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cryptomelane-type manganese oxide (OMS-2)-supported Co (xCo/OMS-2; x = 5, 10, and 15 wt.%) catalysts were prepared via a pre-incorporation route. The as-prepared materials were used as catalysts for catalytic oxidation of toluene (2000 ppmV). Physical and chemical properties of the catalysts were measured using the X-ray diffraction (XRD), Fourier transform infrared spectroscopic (FT-IR), scanning electron microscopic (SEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature-programmed reduction (H2-TPR) techniques. Among all of the catalysts, 10Co/OMS-2 performed the best, with the T90%, specific reaction rate at 245°C, and turnover frequency at 245°C (TOFCo) being 245°C, 1.23 × 10−3 moltoluene/(gcat·sec), and 11.58 × 10−3 sec−1 for toluene oxidation at a space velocity of 60,000 mL/(g·hr), respectively. The excellent catalytic performance of 10Co/OMS-2 were due to more oxygen vacancies, enhanced redox ability and oxygen mobility, and strong synergistic effect between Co species and OMS-2 support. Moreover, in the presence of poisoning gases CO2, SO2 or NH3, the activity of 10Co/OMS-2 decreased for the carbonate, sulfate and ammonia species covered the active sites and oxygen vacancies, respectively. After the activation treatment, the catalytic activity was partly recovered. The good low-temperature reducibility of 10Co/OMS-2 could also facilitate the redox process accompanied by the consecutive electron transfer between the adsorbed O2 and the cobalt or manganese ions. In the oxidation process of toluene, the benzoic and aldehydic intermediates were first generated, which were further oxidized to the benzoate intermediate that were eventually converted into H2O and CO2.  相似文献   

2.
Triphenylmethane (tpm) derivatives (e.g. tpmCV) have threatened the safety of the aquatic environment due to the potential toxicity and carcinogenicity. In this study, the novel ultrasonic/persulfate/chlorite (US/S2O82−/ClO2) oxidation process was developed for the effective removal of tpmCV in wastewater. The apparent non-integer kinetics (n around 1.20) of tpmCV degradation under different factors (R2Adj > 0.990) were investigated, respectively. Inhibiting effects of anions were greater than those of cations (except Fe(II/III)). The adding of micromolecule organic acids could regulate degradation towards positive direction. The double response surface methodology (RSM) was designed to optimize tpmCV removal process, and the acoustic-piezoelectric interaction was simulated to determine the propagation process of acoustic wave in the reactor. The possible degradation pathway was explored to mainly include carbonylation, carboxylation, and demethylation. The estimated effective-mean temperature at the bubble-water interface was calculated from 721 to 566 K after introducing the ClO2, however, the adsorption or partitioning capacity of tpmCV in the reactive zone was widened from 0.0218 to 0.0982. The proposed co-catalysis of US/S2O82−/ClO2 was based on the determined active species mainly including ClO2, SO4, and OH. Compared with other US-based processes, the operating cost (3.97 $/m3) of US/S2O82−/ClO2 with the EE/O value (16.8 kWh/m3) was relatively reduced.  相似文献   

3.
This study investigated the enhancement effects of dissolved carbonates on the peroxymonosulfate-based advanced oxidation process with CuS as a catalyst. It was found that the added CO32− increased both the catalytic activity and the stability of the catalyst. Under optimized reaction conditions in the presence of CO32−, the degradation removal of 4-methylphenol (4-MP) within 2 min reached 100%, and this was maintained in consecutive multi-cycle experiments. The degradation rate constant of 4-MP was 2.159 min−1, being 685% greater than that in the absence of CO32− (0.315 min−1). The comparison of dominated active species and 4-MP degradation pathways in both CO32−-free and CO32−-containing systems suggested that more CO3/1O2 was produced in the case of CO32−deducing an electron transfer medium, which tending to react with electron-rich moieties. Meanwhile, Characterization by X-ray photoelectron spectroscopic and cyclic voltammetry measurement verified CO32− enabled the effective reduction of Cu2+ to Cu+. By investigating the degradation of 11 phenolics with different substituents, the dependence of degradation kinetic rate constant of the phenolics on their chemical structures indicated that there was a good linear relationship between the Hammett constants σp of the aromatic phenolics and the logarithm of k in the CO32−-containing system. This work provides a new strategy for efficient removal of electron-rich moieties under the driving of carbonate being widely present in actual water bodies.  相似文献   

4.
Bimetallic oxides composites have received an increasing attention as promising adsorbents for aqueous phosphate (P) removal in recent years. In this study, a novel magnetic composite MZLCO was prepared by hybridizing amorphous Zr-La (carbonate) oxides (ZLCO) with nano-Fe3O4 through a one-pot solvothermal method for efficient phosphate adsorption. Our optimum sample of MZLCO-45 exhibited a high Langmuir maximum adsorption capacity of 96.16 mg P/g and performed well even at low phosphate concentration. The phosphate adsorption kinetics by MZLCO-45 fitted well with the pseudo-second-order model, and the adsorption capacity could reach 79% of the ultimate value within the first 60 min. The phosphate adsorption process was highly pH-dependent, and MZLCO-45 performed well over a wide pH range of 2.0-8.0. Moreover, MZLCO-45 showed a strong selectivity to phosphate in the presence of competing ions (Cl, NO3, SO42−, HCO3, Ca2+, and Mg2+) and a good reusability using the eluent of NaOH/NaCl mixture, then 64% adsorption capacity remained after ten recycles. The initial 2.0 mg P/L in municipal wastewater and surface water could be efficiently reduced to below 0.1mg P/L by 0.07 g/L MZLCO-45, and the phosphate removal efficiencies were 95.7% and 96.21%, respectively. Phosphate adsorption mechanisms by MZLCO-45 could be attributed to electrostatic attraction and the inner-sphere complexation via ligand exchange forming Zr/La-O-P, -OH and CO32− groups on MZLCO-45 surface played important roles in the ligand exchange process. The existence of oxygen vacancies could accelerate the phosphate absorption rate of the MZLCO-45 composites.  相似文献   

5.
Luoyang is a typical heavy industrial city in China, with a coal-dominated energy structure and serious air pollution. Following the implementation of the clean air actions, the physicochemical characteristics and sources of PM2.5 have changed. A comprehensive study of PM2.5 was conducted from October 16, 2019 to January 23, 2020 to evaluate the effectiveness of previous control measures and further to provide theory basis for more effective policies in the future. Results showed that the aerosol pollution in Luoyang in autumn and winter is still serious with the average concentration of 91.1 μg/m3, although a large reduction (46.9%) since 2014. With the contribution of nitrate increased from 12.5% to 25.1% and sulfate decreased from 16.7% to 11.2%, aerosol pollution has changed from sulfate-dominate to nitrate-dominate. High NO3/SO42− ratio and the increasing of NO3/SO42− ratio with the aggravation of pollution indicating vehicle exhaust playing an increasingly important role in PM2.5 pollution in Luoyang, especially in the haze processes. Secondary inorganic ions contributed significantly to the enhancement of PM2.5 during the pollution period. The high value of Cl/Na+ and EC concentration indicate coal combustion in Luoyang is still serious. The top three contributor sources were secondary inorganic aerosols (33.3%), coal combustion (13.6%), and industrial emissions (13.4%). Close-range transport from the western and northeastern directions were more important factors in air pollution in Luoyang during the sampling period. It is necessary to strengthen the control of coal combustion and reduce vehicle emissions in future policies.  相似文献   

6.
Methyl-hydroxy-cyclohexadienyl radicals (OTAs) are the key products of the photooxidation of toluene, with implications for the fate of toluene. Hence, we investigated the photooxidation mechanisms and kinetics of three main OTAs (o-OTA, m-OTA, and p-OTA) with NO2 using quantum chemical calculations as well as the fate of OTAs under the different concentration ratios of NO2 and O2. The mechanism results show that the pathway of H-abstraction by NO2 to anti-HONO (anti-H-abstraction) is more favorable than the syn-H-abstraction pathway, because the strong interaction between OTAs and NO2 is formed in the transition states of the anti-H-abstraction pathways. The branching ratios of the anti-H-abstraction pathways are more than 99% in the temperature range of 216−298 K. The total rate constant of the OTA-NO2 reaction is 9.9 × 10−12 cm3/(molecule∙sec) at 298 K, which is contributed about 90% by o-OTA + NO2, and the main products are o-cresol and anti-HONO. The half-lives of the OTA-NO2 reaction in some polluted areas of China are 35 times longer than those of the OTA-O2 reaction. In the atmosphere, the NO2- and O2- initiated reactions of OTAs have the same ability to form cresols as [NO2] is up to 142.1 ppmV, which is impossible to achieve. It implies that under the experimental condition, the [NO2]/[O2] should be controlled to be less than 7.8 × 10−5 to simulate real atmospheric oxidation of toluene. Our results reveal that for the photooxidation of toluene, the yield of cresol is not affected by the concentration of NO2 under the atmospheric environment.  相似文献   

7.
High-surface-area mesoprous powders of γ-Al2O3 doped with Cu2+, Cr3+, and V3+ ions were prepared via a modified sol-gel method and were investigated as catalysts for the oxidation of chlorinated organic compounds. The composites retained high surface areas and pore volumes comparable with those of undoped γ-Al2O3 and the presence of the transition metal ions enhanced their surface acidic properties. The catalytic activity of the prepared catalysts in the oxidation of 1,2-dichloroethane (DCE) was studied in the temperature range of 250-400℃. The catalytic activity and product selectivity were strongly dependent on the presence and the type of dopant ion. While Cu2+- and Cr3+-containing catalysts showed 100% conversion at 300℃ and 350℃, V3+-containing catalyst showed considerably lower conversion. Furthermore, while the major products of the reactions over γ-alumina were vinyl chloride (C2H3Cl) and hydrogen chloride (HCl) at all temperatures, Cu- and Cr-doped catalysts showed significantly stronger capability for deep oxidation to CO2.  相似文献   

8.
In this study, the thermal stability of a ferric oxide catalyst for mercury oxidation was found to be considerably promoted by doping with La2O3. The catalysts doped with La2O3 maintained a higher surface area when subjected to high-temperature calcination, with lower average pore size and a narrower pore size distribution. X-ray diffraction (XRD) results revealed that La2O3 doping hinders the growth of catalyst particles and crystallization of the material at high temperatures. Both NO and SO2 inhibited Hg0 oxidation over the La2O3/Fe2O3 catalyst. Fourier transform infrared (FTIR) spectra revealed that SO2 reacts with O2 over the catalysts to form several species that are inert for mercury oxidation, such as SO42?, HSO4?, or other related species; these inert species cover the catalyst surface and consequently decrease Hg0 oxidation capacity. In addition, NO or SO2 competed with Hg0 for active sites on the La2O3/Fe2O3 catalyst and hindered the adsorption of mercury, thereby inhibiting subsequent Hg0 oxidation. Hg0 oxidation on the La2O3/Fe2O3 catalyst mainly followed the Eley–Rideal mechanism. Moreover, the inhibition effects of NO and SO2 were at least partially reversible, and the catalytic activity was temporarily restored after eliminating NO or SO2.  相似文献   

9.
Size-segregated ambient particulate matter (PM) samples were collected seasonally in suburban Nanjing of east China from 2016 to 2017 and chemically speciated. In both fine (< 2.1 µm, PM2.1) and coarse (> 2.1 µm, PM>2.1) PM, organic carbon (OC) accounted for the highest fractions (26.9% ± 10.9% and 23.1% ± 9.35%) of all measured species, and NO3 lead in average concentrations of water-soluble inorganic ions (WSIIs). The size distributions of measured components were parameterized using geometric mean diameter (GMD). GMD values of NO3, Cl, OC, and PM for the whole size range varied from < 2.1 µm in winter to > 2.1 μm in warm seasons, which was due to the fact that the size distributions of semi-volatile components (e.g., NH4NO3, NH4Cl, and OC) had a dependency on the ambient temperature. Unlike OC, elemental carbon (EC), and elements, NH4+, NO3, and SO42− exhibited an increase trend in GMD values with relative humidity, indicating that the hygroscopic growth might also play a role in driving seasonal changes of PM size distributions. Positive matrix factorization was performed using compositional data of fine and coarse particles, respectively. The secondary formation of inorganic salts contributing to the majority (> 70%) of fine PM and 20.2% ± 19.9% of speciated coarse PM. The remaining coarse PM content was attributed to a variety of dust sources. Considering that coarse and fine PM had comparable mass concentrations, more attention should be paid to local dust emissions in future air quality plans.  相似文献   

10.
Methane is produced in a microbial electrosynthesis system (MES) without organic substrates. However, a relatively high applied voltage is required for the bioelectrical reactions. In this study, we demonstrated that electrotrophic methane production at the biocathode was achieved even at a very low voltage of 0.1 V in an MES, in which abiotic HS oxidized to SO42− at the anodic carbon-cloth surface coated with platinum powder. In addition, microbial community analysis revealed the most probable pathway for methane production from electrons. First, electrotrophic H2 was produced by syntrophic bacteria, such as Syntrophorhabdus, Syntrophobacter, Syntrophus, Leptolinea, and Aminicenantales, with the direct acceptance of electrons at the biocathode. Subsequently, most of the produced H2 was converted to acetate by homoacetogens, such as Clostridium and Spirochaeta 2. In conclusion, the majority of the methane was indirectly produced by a large population of acetoclastic methanogens, namely Methanosaeta, via acetate. Further, hydrogenotrophic methanogens, including Methanobacterium and Methanolinea, produced methane via H2.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

17.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

18.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

19.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

20.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号