首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
At present, the high re-combination rate of photogenerated carriers and the low redox capability of the photocatalyst are two factors that severely limit the improvement of photocatalytic performance. Herein, a dual Z-scheme photocatalyst bismuthzirconate/graphitic carbon nitride/silver phosphate (Bi2Zr2O7/g-C3N4/Ag3PO4 (BCA)) was synthesized using a co-precipitation method, and a dual Z-scheme heterojunction photocatalytic system was established to decrease the high re-combination rate of photogenerated carriers and consequently improve the photocatalytic performance. The re-combination of electron-hole pairs (e and h+) in the valence band (VB) of g-C3N4 increases the redox potential of e and h+, leading to significant improvements in the redox capability of the photocatalyst and the efficiency of e-h+ separation. As a photosensitizer, Ag3PO4 can enhance the visible light absorption capacity of the photocatalyst. The prepared photocatalyst showed strong stability, which was attributed to the efficient suppression of photo-corrosion of Ag3PO4 by transferring the e to the VB of g-C3N4. Tetracycline was degraded efficiently by BCA-10% (the BCA with 10 wt.% of AgPO4) under visible light, and the degradation efficiency was up to 86.2%. This study experimentally suggested that the BCA photocatalyst has broad application prospects in removing antibiotic pollution.  相似文献   

2.
In this work, a novel dual Z-scheme Bi2WO6/g-C3N4/black phosphorus quantum dots (Bi2WO6/g-C3N4/BPQDs) composites were fabricated and utilized towards photocatalytic degradation of bisphenol A (BPA) under visible-light irradiation. Optimizing the content of g-C3N4 and BPQDs in Bi2WO6/g-C3N4/BPQDs composites to a suitable mass ratio can enhance the visible-light harvesting capacity and increase the charge separation efficiency and the transfer rate of excited-state electrons and holes, resulting in much higher photocatalytic activity for BPA degradation (95.6%, at 20 mg/L in 120 min) than that of Bi2WO6 (63.7%), g-C3N4 (25.0%), BPQDs (8.5%), and Bi2WO6/g-C3N4 (79.6%), respectively. Radical trapping experiments indicated that photogenerated holes (h+) and superoxide radicals (•O2) played crucial roles in photocatalytic BPA degradation. Further, the possible degradation pathway and photocatalytic mechanism was proposed by analyzing the BPA intermediates. This work also demonstrated that the Bi2WO6/g-C3N4/BPQDs as effective photocatalysts was stable and have promising potential to remove environmental contaminants from real water samples.  相似文献   

3.
AgCl/ZnO/g-C3N4, a visible light activated ternary composite catalyst, was prepared by combining calcination, hydrothermal reaction and in-situ deposition processes to treat/photocatalyse tetracycline hydrochloride (TC-HCl) from pharmaceutical wastewater under visible light. The morphological, structural, electrical, and optical features of the novel photocatalyst were characterized using scanning electron microscopy (SEM), UV-visible light absorption spectrum (UV–Vis DRS), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and transient photocurrent techniques. All analyses confirmed that the formation of heterojunctions between AgCl/ZnO and g-C3N4 significantly increase electron-hole transfer and separation compared to pure ZnO and g-C3N4. Thus, AgCl/ZnO/g-C3N4 could exhibit superior photocatalytic activity during TC-HCl assays (over 90% removal) under visible light irradiation. The composite could maintain its photocatalytic stability even after four consecutive reaction cycles. Hydrogen peroxide (H2O2) and superoxide radical (·O2) contributed more than holes (h+) and hydroxyl radicals (·OH) to the degradation process as showed by trapping experiments. Liquid chromatograph-mass spectrometer (LC-MS) was used for the representation of the TC-HCl potential degradation pathway. The applicability and the treatment potential of AgCl/ZnO/g-C3N4 against actual pharmaceutical wastewater showed that the composite can achieve removal efficiencies of 81.7%, 71.4% and 69.0% for TC-HCl, chemical oxygen demand (COD) and total organic carbon (TOC) respectively. AgCl/ZnO/g-C3N4 can be a prospective key photocatalyst in the field of degradation of persistent, hardly-degradable pollutants, from industrial wastewater and not only.  相似文献   

4.
In order to enhance the removal performance of graphitic carbon nitride (g-C3N4) on organic pollutant, a simultaneous process of adsorption and photocatalysis was achieved via the compounding of biochar and g-C3N4. In this study, g-C3N4 was obtained by a condensation reaction of melamine at 550°C. Then the g-C3N4/biochar composites were synthesized by ball milling biochar and g-C3N4 together, which was considered as a simple, economical, and green strategy. The characterization of resulting g-C3N4/biochar suggested that biochar and g-C3N4 achieved effective linkage. The adsorption and photocatalytic performance of the composites were evaluated with enrofloxacin (EFA) as a model pollutant. The result showed that all the g-C3N4/biochar composites displayed higher adsorption and photocatalytic performance to EFA than that of pure g-C3N4. The 50% g-C3N4/biochar performed best and removed 45.2% and 81.1% of EFA (10 mg/L) under darkness and light with a dosage of 1 mg/mL, while g-C3N4 were 19.0% and 27.3%, respectively. Besides, 50% g-C3N4/biochar showed the highest total organic carbon (TOC) removal efficiency (65.9%). Radical trapping experiments suggested that superoxide radical (?O2?) and hole (h+) were the main active species in the photocatalytic process. After 4 cycles, the composite still exhibited activity for catalytic removal of EFA.  相似文献   

5.
The graphic carbon nitride/polyaniline (g-C3N4/PANI) hybrid composites were successfully synthesized by a facile in situ polymerization process under ice water bath. The photocatalytic activities of the g-C3N4/PANI composites were evaluated by using oxytetracycline (OTC) as model pollutants. The optimal g-C3N4/PANI composite (5%PANI: the g-C3N4/PANI hybrid with 5 wt.% of PANI) showed an enhancement degradation rate of 5-fold compared to that of conventional g-C3N4 under simulated-sunlight irradiation. In addition, the 5%PANI demonstrate significantly photocatalytic evolution H2 rate (163.2 μmol/(g?hr)) under the visible light irradiation. Furthermore, based on the results of optical performance and electrochemical testing, a possible mechanism was proposed, indicating that the incorporation of PANI into the traditional g-C3N4 can effectively tune the electronic structures, improve the photo-generated electrons-holes separation and enhance extensive absorption of visible light. Such a g-C3N4/PANI hybrid nanocomposites could be envisaged to possess great potentials in practical wastewater treatment and water splitting.  相似文献   

6.
Bisphenol A (BPA) has received increasing attention due to its long-term industrial application and persistence in environmental pollution. Iron-based carbon catalyst activation of peroxymonosulfate (PMS) shows a good prospect for effective elimination of recalcitrant contaminants in water. Herein, considering the problem about the leaching of iron ions and the optimization of heteroatoms doping, the iron, nitrogen and sulfur co-doped tremella-like carbon catalyst (Fe-NS@C) was rationally designed using very little iron, S-C3N4 and low-cost chitosan (CS) via the impregnation-calcination method. The as-prepared Fe-NS@C exhibited excellent performance for complete removal of BPA (20 mg/L) by activating PMS with the high kinetic constant (1.492 min−1) in 15 min. Besides, the Fe-NS@C/PMS system not only possessed wide pH adaptation and high resistance to environmental interference, but also maintained an excellent degradation efficiency on different pollutants. Impressively, increased S-C3N4 doping amount modulated the contents of different N species in Fe-NS@C, and the catalytic activity of Fe-NS@C-1-x was visibly enhanced with increasing S-C3N4 contents, verifying pyridine N and Fe-Nx as main active sites in the system. Meanwhile, thiophene sulfur (C-S-C) as active sites played an auxiliary role. Furthermore, quenching experiment, EPR analysis and electrochemical test proved that surface-bound radicals (·OH and SO4⋅−) and non-radical pathways worked in the BPA degradation (the former played a dominant role). Finally, possible BPA degradation route were proposed. This work provided a promising way to synthesize the novel Fe, N and S co-doping carbon catalyst for degrading organic pollutants with low metal leaching and high catalytic ability.  相似文献   

7.
Photocatalytic oxidation of emerging contaminants (ECs) in water has recently gained extensive attentions. In this study, bismuth oxychloride-based plasmon photocatalysts (Bi-Bi3O4Cl) exhibiting high performance were successfully developed by reducing Bi3+ on the surface of Bi3O4Cl. Consequently, the photocatalysts were used to remove ECs from water. The effects of developmental process and Bi metal plasmon resonance on the photoelectric performances of Bi-Bi3O4Cl were investigated through a series of characterizations. The UV-vis diffuse reflection and photoluminescence spectra revealed that the light absorption range of the photocatalyst gradually increased and the electron recombination rate gradually decreased with the introduction of Bi metals. The optimal removal rates of ciprofloxacin and tetrabromobisphenol A by Bi-Bi3O4Cl were 93.8% and 96.4%; the respective reaction rate constants were 5.48 and 4.93 times higher than that of Bi3O4Cl. The mechanism study indicated that main reactants in the photocatalytic system were •O2 radicals and photogenerated holes, and the existence of oxygen vacancies and Bi metals promoted electron transfer in photocatalyst. In conclusion, this research produces a novel, green, highly efficient, and stable visible light photocatalyst for the removal of ECs from water.  相似文献   

8.
Understanding the degradation behavior of azo dyes in photocatalytic wastewater treatment is of fundamental and practical importance for their application in textile-processing and other coloration industries. In this study, quantum chemistry, as density functional theory, was used to elucidate different degradation pathways of azo pyridone dyes in a hydroxyl radical (HO?)-initiated photocatalytic system. A series of substituted azo pyridone dyes were synthesized by changing the substituent group in the para position of the benzene moiety, ranging from strong electron-donating to strong electron-withdrawing groups. The effect of dye molecular structure on the photocatalytic degradation reaction mechanism was analyzed and quantification of substituent effects on the thermodynamic and kinetics parameters was performed. Potential energy surface analysis revealed the most susceptible reaction site for the HO? attack. The calculated reaction barriers are found to be strongly affected by the nature of substituent group with a good correlation using Hammett σp constants and experimentally determined reaction rates. The stability of pre-reaction complexes and transition state complexes were analyzed applying the distortion-interaction model. The increased stability of the transition state complexes with the distancing from the substituent group has been established.  相似文献   

9.
This study investigated the enhancement effects of dissolved carbonates on the peroxymonosulfate-based advanced oxidation process with CuS as a catalyst. It was found that the added CO32− increased both the catalytic activity and the stability of the catalyst. Under optimized reaction conditions in the presence of CO32−, the degradation removal of 4-methylphenol (4-MP) within 2 min reached 100%, and this was maintained in consecutive multi-cycle experiments. The degradation rate constant of 4-MP was 2.159 min−1, being 685% greater than that in the absence of CO32− (0.315 min−1). The comparison of dominated active species and 4-MP degradation pathways in both CO32−-free and CO32−-containing systems suggested that more CO3/1O2 was produced in the case of CO32−deducing an electron transfer medium, which tending to react with electron-rich moieties. Meanwhile, Characterization by X-ray photoelectron spectroscopic and cyclic voltammetry measurement verified CO32− enabled the effective reduction of Cu2+ to Cu+. By investigating the degradation of 11 phenolics with different substituents, the dependence of degradation kinetic rate constant of the phenolics on their chemical structures indicated that there was a good linear relationship between the Hammett constants σp of the aromatic phenolics and the logarithm of k in the CO32−-containing system. This work provides a new strategy for efficient removal of electron-rich moieties under the driving of carbonate being widely present in actual water bodies.  相似文献   

10.
Coagulation and precipitation is a widely applied method to remove F? from wastewater. In this work, the effect of coagulation on the removal of F? and organic matter from coking wastewater was studied using AlCl3 and FeCl3 as compound coagulants. The removal rates of F? and organic matter under different coagulant doses and pH conditions were investigated. The results show that the highest removal rates of F? by AlCl3 and FeCl3 are 94.4% and 25.4%, respectively; when the dosage is 10 mmol/L, the TOC removal rates of FeCl3 and AlCl3 reach 20.4% and 34.7%, respectively. Therefore, the removal rate of F? by AlCl3 is higher than that of FeCl3, but the removal rate of organic matter by FeCl3 is relatively higher. The addition of Ca2+ can promote the removal of F?, but the removal rate of organic matter decreases. In addition, by investigating the effects of different pH and Fe–Al ratio on the removal rate, the removal effect of adding FeCl3 and AlCl3 at the same time was discussed. The results show that the most suitable working condition for the removal of organic matter and F? is that the pH is 6.5 and the molar ratio of Al/Fe is 8:2. Overall, the removal mechanism of F? and organic matter in coking wastewater by FeCl3 and AlCl3 was explored in this study. The experimental results can provide reference for the advanced treatment of coking wastewater.  相似文献   

11.
12.
13.
14.
15.
16.
17.
聚乙烯醇-硼酸固定化方法的改进   总被引:24,自引:0,他引:24       下载免费PDF全文
在固定化细胞技术中,常采用聚乙烯醇作为包埋介质,但聚乙烯醇固定化颗粒水溶膨胀性较大、易碎.笔者采用延时包埋法与加入化学药剂法对其进行了改进.结果表明,用这两种方法制得的聚乙烯醇固定化颗粒的水溶膨胀性大大减少、不易破碎;电镜观察发现,改进后的聚乙烯醇凝胶网状结构明显优于未经过改进的聚乙烯醇凝胶的网状结构.   相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号