首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 92 毫秒
1.
Increasing attention has been paid to the air pollution more recently. Smog chamber has been proved as a necessary and effective tool to study atmospheric processes, including photochemical smog and haze formation. A novel smog chamber was designed to study the atmospheric photochemical reaction mechanism of typical volatile organic compounds(VOCs) as well as the aging of aerosols. The smog chamber system includes an enclosure equipped with black lights as the light source, two parallel reactors...  相似文献   

2.
Volatile organic compounds(VOCs) are the important precursors of the tropospheric ozone(O_3) and secondary organic aerosols(SOA),both of which are known to harm human health and disrupt the earth's climate system.In this study,VOC emission factors,O_3 and SOA formation potentials were estimated for two types of industrial boilers:coal-fired boilers(n=3) and oil-fired boilers(n=3).Results showed that EVOCs concentrations were more than nine times higher for oil-fire d boilers compared to those for coal-fired boilers.Emission factors of ΣVOCs were found to be higher for oil-fired boilers(9.26-32.83 mg-VOC/kg) than for coal-fired boilers(1.57-4.13 mg-VOC/kg).Alkanes and aromatics were obtained as the most abundant groups in coal-fired boilers,while oxygenated organics and aromatics were the most contributing groups in oil-fired boilers.Benzene,n-hexane and o-ethyl toluene were the abundant VOC species in coal-fired boiler emissions,whereas toluene was the most abundant VOC species emitted from oil-fired boilers.O_3 and SOA formation potentials were found 12 and 18 times,respectively,higher for oil-fired than for coal-fired boilers.Total OFP ranged from 3.99 to 11.39 mg-O_3/kg for coal-fired boilers.For oil-fired boilers,total OFP ranged from 36.16 to 131.93 mg-O_3/kg.Moreover,total secondary organic aerosol potential(SOAP) ranged from 65.4 to 122.5 mg-SOA/kg and 779.9 to 2252.5 mg-SOA/kg for the coal-fired and oil-fired boilers,respectively.  相似文献   

3.
Secondary organic aerosol(SOA) is a very important component of fine particulate matter(PM2.5) in the atmosphere. However, the simulations of SOA, which could help to elucidate the detailed mechanism of SOA formation and quantify the roles of various precursors, remains unsatisfactory, as SOA levels are frequently underestimated. It has been found that the performance of SOA formation models can be significantly improved by incorporating the emission and evolution of semivolatile and ...  相似文献   

4.
The formation and aging mechanism of secondary organic aerosol (SOA) and its influencing factors have attracted increasing attention in recent years because of their effects on climate change, atmospheric quality and human health. However, there are still large errors between air quality model simulation results and field observations. The currently undetected components during the formation and aging of SOA due to the limitation of current monitoring techniques and the interactions among multiple SOA formation influencing factors might be the main reasons for the differences. In this paper, we present a detailed review of the complex dynamic physical and chemical processes and the corresponding influencing factors involved in SOA formation and aging. And all these results were mainly based the studies of photochemical smog chamber simulation. Although the properties of precursor volatile organic compounds (VOCs), oxidants (such as OH radicals), and atmospheric environmental factors (such as NOx, SO2, NH3, light intensity, temperature, humidity and seed aerosols) jointly influence the products and yield of SOA, the nucleation and vapor pressure of these products were found to be the most fundamental aspects when interpreting the dynamics of the SOA formation and aging process. The development of techniques for measuring intermediate species in SOA generation processes and the study of SOA generation and aging mechanism in complex systems should be important topics of future SOA research.  相似文献   

5.
Coking industry is an important volatile organic compounds(VOCs) emission source in China,however,detailed information on VOCs emissions is lacking.Therefore,we selected a typical mechanized coking plant and collected air samples according to the Emission Standard of Pollutants for Coking Chemical Industry(GB16171-2012).Using gas chromatographymass spectrometry method,we analyzed the VOCs in the air samples,and applied maximum increment reactivity(MIR) rule to estimate ozone formation potential(...  相似文献   

6.
Secondary organic aerosol(SOA) formation potential for six kinds of short aliphatic ethers has been studied.The size distribution,mass concentration,and yield of SOA formed by ethers photooxidation were determined under different conditions.The results showed that all six ethers can generate SOA via reaction with OH radicals even under no seed and NOxfree condition.The mass concentration for six seedless experiments was less than 10 μg/m3 and the SOA yields were all below 1...  相似文献   

7.
Organosulfate (OSA) nanoparticles,as secondary organic aerosol (SOA) compositions,are ubiquitous in urban and rural environments.Hence,we systemically investigated the mechanisms and kinetics of aqueous-phase reactions of 1-butanol/1-decanol (BOL/DOL) and their roles in the formation of OSA nanoparticles by using quantum chemical and kinetic calculations.The mechanism results show that the aqueous-phase reactions of BOL/DOL start from initial protonation at alcoholic OH-groups to form carbenium ...  相似文献   

8.
Improving our understanding of air pollutant emissions from the asphalt industry is critical for the development and implementation of pollution control policies. In this study, the spatial distribution of potential maximum emissions of volatile organic compounds (VOCs) in the complete life cycle of asphalt mixtures, as well as the particulate matter (PM), asphalt fume, nonmethane hydrocarbons (NMHCs), VOCs, and benzoapyrene (BaP) emissions from typical processes (e.g., asphalt and concrete mixing stations, asphalt heating boilers, and asphalt storage tanks) in asphalt mixing plants, were determined in Beijing in 2017. The results indicated that the potential maximum emissions of VOCs in the complete life cycle of asphalt mixtures were 18,001 ton, with a large contribution from the districts of Daxing, Changping, and Tongzhou. The total emissions of PM, asphalt fume, NMHC, VOCs, and BaP from asphalt mixing plants were 3.1, 12.6, 3.1, 23.5, and 1.9 × 10?3 ton, respectively. The emissions of PM from asphalt and concrete mixing stations contributed the most to the total emissions. The asphalt storage tank was the dominant emission source of VOCs, accounting for 96.1% of the total VOCs emissions in asphalt mixing plants, followed by asphalt heating boilers. The districts of Daxing, Changping, and Shunyi were the dominant regions for the emissions of PM, asphalt fume, NMHC, and BaP, while the districts of Shunyi, Tongzhou, and Changping contributed the most emissions of VOCs.  相似文献   

9.
Vacuum ultraviolet(VUV) photolysis is recognized as an environmental-friendly treatment process. Nitrate(NO-3) and natural organic matter(NOM) are widely present in water source.We investigated trichloronitromethane(TCNM) formation during chlorination after VUV photolysis, because TCNM is an unregulated highly toxic disinfection byproduct. In this study:(1) we found reactive nitrogen species that is generated under VUV photolysis of NO-3react with organic matter to form nitrogen-containing compo...  相似文献   

10.
Understanding the formation mechanisms of secondary air pollution is very important for the formulation of air pollution control countermeasures in China. Thus, a large-scale outdoor atmospheric simulation smog chamber was constructed at Chinese Research Academy of Environmental Sciences (the CRAES Chamber), which was designed for simulating the atmospheric photochemical processes under the conditions close to the real atmospheric environment. The chamber consisted of a 56-m3 fluorinated ethylene propylene (FEP) Teflon film reactor, an electrically-driven stainless steel alloy shield, an auxiliary system, and multiple detection instrumentations. By performing a series of characterization experiments, we obtained basic parameters of the CRAES chamber, such as the mixing ability, the background reactivity, and the wall loss rates of gaseous compounds (propene, NO, NO2, ozone) and aerosols (ammonium sulfate). Oxidation experiments were also performed to study the formation of ozone and secondary organic aerosol (SOA), including α-pinene ozonolysis, propene and 1,3,5-trimethylbenzene photooxidation. Temperature and seed effects on the vapor wall loss and SOA yields were obtained in this work: higher temperature and the presence of seed could reduce the vapor wall loss; SOA yield was found to depend inversely on temperature, and the presence of seed could increase SOA yield. The seed was suggested to be used in the chamber to reduce the interaction between the gas phase and chamber walls. The results above showed that the CRAES chamber was reliable and could meet the demands for investigating tropospheric chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号