首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
Dissolved organic matter (DOM) represents one of the most mobile and reactive organic compounds in ecosystem and plays an important role in the fate and transport of soil organic pollutants, nutrient cycling and more importantly global climate change. Electrochemical methods were first employed to evaluate DOM redox properties, and spectroscopic approaches were utilized to obtain information concerning its composition and structure. DOM was extracted from a forest soil profile with five horizons. Differential pulse voltammetry indicated that there were more redox-active moieties in the DOM from upper horizons than in that from lower horizons. Cyclic voltammetry further showed that these moieties were reversible in electron transfer. Chronoamperometry was employed to quantify the electron transfer capacity of DOM, including electron acceptor capacity and electron donor capacity, both of which decreased sharply with increasing depth. FT-IR, UV-Vis and fluorescence spectra results suggested that DOM from the upper horizons was enriched with aromatic and humic structures while that from the lower horizons was rich in aliphatic carbon, which supported the findings obtained by electrochemical approaches. Electrochemical approaches combined with spectroscopic methods were applied to evaluate the characteristics of DOM extracted along a forest soil profile. The electrochemical properties of DOM, which can be rapidly and simply obtained, provide insight into the migration and transformation of DOM along a soil profile and will aid in better understanding of the biogeochemical role of DOM in natural environments.  相似文献   

2.
Norfloxacin(NOR), an ionizable antibiotic frequently used in the aquaculture industry, has aroused public concern due to its persistence, bacterial resistance, and environmental ubiquity.Therefore, we investigated the photolysis of different species of NOR and the impact of a ubiquitous component of natural water — dissolved organic matter(DOM), which has a special photochemical activity and normally acts as a sensitizer or inhibiter in the photolysis of diverse organics; furthermore, scavenging experiments combined with electron paramagnetic resonance(EPR) were performed to evaluate the transformation of NOR in water. The results demonstated that NOR underwent direct photolysis and self-sensitized photolysis via hydroxyl radical(U OH) and singlet oxygen(1O2) based on the scavenging experiments. In addition, DOM was found to influence the photolysis of different NOR species, and its impact was related to the concentration of DOM and type of NOR species. Photolysis of cationic NOR was photosensitized by DOM at low concentration, while zwitterionic and anionic NOR were photoinhibited by DOM, where quenching of U OH predominated according to EPR experiments, accompanied by possible participation of excited triplet-state NOR and1O2. Photo-intermediate identification of different NOR species in solutions with/without DOM indicated that NOR underwent different photodegradation pathways including dechlorination, cleavage of the piperazine side chain and photooxidation, and DOM had little impact on the distribution but influenced the concentration evolution of photolysis intermediates. The results implied that for accurate ecological risk assessment of emerging ionizable pollutants, the impact of DOM on the environmental photochemical behavior of all dissociated species should not be ignored.  相似文献   

3.
Soil dissolved organic matter(DOM) plays an essential role in the Three Gorges Reservoir(TGR) as a linkage between terrestrial and aquatic systems.In particular,the reducing capacities of soil DOM influence the geochemistry of contaminants such as mercury(Hg).However,few studies have investigated the molecular information of soil DOM and its relationship with relevant geochemic al reactivities,including redox properties.We collected samples from eight sites in the TGR areas and studied the link between the molecular characteristics of DOM and their electron donation capacities(EDCs) toward Hg(II).The average kinetic rate and EDC of soil DOM in TGR areas were(0.004±0.001) hr~(-1) and(2.88±1.39) nmol e~-/mg DOM_(bulk),respectively.Results suggest that higher EDCs and relatively rapid kinetics were related to the greater electron donating components of ligninderived and perhaps pyrogenic DOM,which are the aromatic constituents that influenced the reducing capacities of DOM in the present study.Molecular details revealed that even the typical autochthonous markers are important for the EDCs of DOM as well,in contrast to what is generally assumed.More studies identifying specific DOM molecular components involved in the abiotic reduction of Hg(II) are required to further understand the relations between DOM sources and their redox roles in the environmental fate of contaminants.  相似文献   

4.
Response of two wheat cultivars (Triticum aestivum cv. YM 158 and NM 9) to the herbicide chlorotoluron and the effect of two forms of dissolved organic matter on the chlorotoluron toxicity to the plants were characterized. Treatment with chlorotoluron at 10-50 μg/ml inhibited the seed germination and a dose-response was observed. The inhibition of seed germination was correlated to the depression of a-amylase activities. To identify whether chlorotoluron induced oxidative damage to wheat plants, the malondlaldehyde (MDA) content and electrolyte leakage were measured. Results showed that both MDA content and electrolyte leakage in the chlorotoluron-treated roots significantly increased. Activities of several key enzymes were measured that operate in citric acid cycle and carbohydrate metabolic pathway. Inhibited activities of citrate synthase and NADP-isocitrate dehydrogenase were observed in the chlorotoluron-treated roots as compared to control plants. We also examined malate dehydrogenase and phosphoenolpyruvate carboxylase in wheat roots exposed to 30 μg/ml chlorotoluron, liowever, none of the enzymes showed significant changes in activities. Application of 160 μg/ml dissolved organic matter (DOM) extracted from non-treated sludge(NTS) and heat-expanded sludge (lIES) in the medium with 30 μg/ml chlorotoluron induced an additive inhibition of seed germination and plant growth. The inhibition of growth due to the DOM treatment was associated with the depression of activities of a-amylase, citrate synthase and NADP-isocitrate dehydrogenase, as well as the increase in malondlaldehyde content and electrolyte leakage. These results suggested that the presence of DOM might enhance the uptake and accumulation of chlorotoluron, and thus resulted in greater toxicity in wheat plants. The two forms of DOM exhibited differences in regulation of chlorotoluron toxicity to the wheat plants. Treatments with DOM-NTS induced greater toxicity to plants as compared to those with DOM-HES. In addition to DOM affecting chlorotoluron-induced toxicity to wheat plants, the cultivars could have also contributed to differences. Generally, NM-9 showed a higher sensitivity to chlorotoluron than YM 158 either in the absence or in the presence of DOM.  相似文献   

5.
Understanding the complexity of dissolved organic matter(DOM)in stormwater has drawn a lot of interest,since DOM from stormwater causes not only environmental impacts,but also worsens downstream aquatic quality associated with water supply and treatability.This study introduced and employed high-performance size exclusion chromatography(HPSEC)coupled with an ultraviolet–visible(UV–vis)diode array detector to assess changes in stormwater-associated DOM characteristics.Stormwater DOM was also analysed in relation to storm event characteristics,water quality and spectroscopic analysis.Statistical tools were used to determine the correlations within DOM and water quality measurements.Results showed that dissolved organic carbon(DOC)and UV absorbance at 254 nm(UV_(254))as conventional DOM parameters were found to be correlated well to the changes in stormwater quality during each of the three storm events studied.Both detector wavelengths(210and 254 nm)and their ratio(A_(210)/A_(254))were found to provide additional information on the physiochemical properties of stormwater-associated DOM.This study indicated that A_(210)/A_(254) is an important parameter which could be used to estimate the DOM proportions of functional groups and conjugated carbon species.This study provided also an understanding of stormwater quality constituents through assessing variability and sensitivity for various parameters,and the additional information of rainfall characteristics on runoff quality data for a better understanding of parameter correlations and influences.  相似文献   

6.
The seasonal changes in dissolved organic matter (DOM), and its correlation with the release of internal nutrients during the annual cycle of cyanobacteria in the eutrophic Lake Chaohu, China, were investigated from four sampling periods between November 2020 and July 2021. The DOM fluorescence components were identified as protein-like C1, microbial humic-like C2, and terrestrial humic-like C3. The highest total fluorescence intensity (FT) of DOM in sediments during the incubation stage is due to the decomposition and degradation of cyanobacteria remains. The lowest humification of DOM and the highest proportion of C1 in waters during the initial cyanobacterial growth indicate that fresh algae are the main source. The highest molecular weight of DOM and FT of the C2 in sediments during cyanobacterial outbreaks indicate the concurrent deposition of undegraded cyanobacterial remains and microbial degradation. The components of DOM are affected mainly by the dissolved total phosphorus in waters, while the temperature drives the annual cycle of cyanobacteria. The decreasing C1 in sediments and increasing nutrients in waters from the cyanobacterial incubation to outbreak indicate that mineralization of algal organic matter contributes importantly to the release of internal nutrients, with the strongest release of phosphorus observed during the early growth of cyanobacteria. The humic-like C2 and C3 components could also affect the dynamics of internal phosphorus through the formation of organic colloids and organic–inorganic ligands. The results show that the degradation of DOM leads to nutrients release and thus supports the continuous growth of cyanobacteria in eutrophic Lake Chaohu.  相似文献   

7.
In order to understand the transport and humification processes of dissolved organic matter(DOM) within sediments of a semi-arid floodplain at Rifle,Colorado,fluorescence excitation–emission matrix(EEM) spectroscopy,humification index(HIX) and specific UV absorbance(SUVA) at 254 nm were applied for characterizing depth and seasonal variations of DOM composition.Results revealed that late spring snowmelt leached relatively fresh DOM from plant residue and soil organic matter down into the deeper vadose zone(VZ).More humified DOM is preferentially adsorbed by upper VZ sediments,while non-or lesshumified DOM was transported into the deeper VZ.Interestingly,DOM at all depths undergoes rapid biological humification process evidenced by the products of microbial by-product-like(i.e.,tyrosine-like and tryptophan-like) matter in late spring and early summer,particularly in the deeper VZ,resulting in more humified DOM(e.g.,fulvic-acid-like and humic-acid-like substances) at the end of year.This indicates that DOM transport is dominated by spring snowmelt,and DOM humification is controlled by microbial degradation,with seasonal variations.It is expected that these relatively simple spectroscopic measurements(e.g.,EEM spectroscopy,HIX and SUVA) applied to depth-and temporally-distributed pore-water samples can provide useful insights into transport and humification of DOM in other subsurface environments as well.  相似文献   

8.
Norfloxacin (NOR), an ionizable antibiotic frequently used in the aquaculture industry, has aroused public concern due to its persistence, bacterial resistance, and environmental ubiquity. Therefore, we investigated the photolysis of different species of NOR and the impact of a ubiquitous component of natural water — dissolved organic matter (DOM), which has a special photochemical activity and normally acts as a sensitizer or inhibiter in the photolysis of diverse organics; furthermore, scavenging experiments combined with electron paramagnetic resonance (EPR) were performed to evaluate the transformation of NOR in water. The results demonstated that NOR underwent direct photolysis and self-sensitized photolysis via hydroxyl radical (·OH) and singlet oxygen (1O2) based on the scavenging experiments. In addition, DOM was found to influence the photolysis of different NOR species, and its impact was related to the concentration of DOM and type of NOR species. Photolysis of cationic NOR was photosensitized by DOM at low concentration, while zwitterionic and anionic NOR were photoinhibited by DOM, where quenching of UOH predominated according to EPR experiments, accompanied by possible participation of excited triplet-state NOR and 1O2. Photo-intermediate identification of different NOR species in solutions with/without DOM indicated that NOR underwent different photodegradation pathways including dechlorination, cleavage of the piperazine side chain and photooxidation, and DOM had little impact on the distribution but influenced the concentration evolution of photolysis intermediates. The results implied that for accurate ecological risk assessment of emerging ionizable pollutants, the impact of DOM on the environmental photochemical behavior of all dissociated species should not be ignored.  相似文献   

9.
This study examined the associations between dissolved organic matter(DOM) characteristics and potential nitrification occurrence in the presence of chloramine along a drinking water distribution system. High-performance size exclusion chromatography(HPSEC) coupled with a multiple wavelength detector(200–280 nm) was employed to characterise DOM by molecular weight distribution, bacterial activity was analysed using flow cytometry, and a package of simple analytical tools, such as dissolved organic carbon, absorbance at 254 nm, nitrate,nitrite, ammonia and total disinfectant residual were also applied and their applicability to indicate water quality changes in distribution systems were also evaluated. Results showed that multi-wavelength HPSEC analysis was useful to provide information about DOM character while changes in molecule weight profiles at wavelengths less than 230 nm were also able to be related to other water quality parameters. Correct selection of the UV wavelengths can be an important factor for providing appropriate indicators associated with different DOM compositions. DOM molecular weight in the range of 0.2–0.5 k Da measured at210 nm correlated positively with oxidised nitrogen concentration(r = 0.99), and the concentrations of active bacterial cells in the distribution system(r = 0.85). Our study also showed that the changes of DOM character and bacterial cells were significant in those sampling points that had decreases in total disinfectant residual. HPSEC-UV measured at210 nm and flow cytometry can detect the changes of low molecular weight of DOM and bacterial levels, respectively, when nitrification occurred within the chloraminated distribution system.  相似文献   

10.
The objective of this research was to quantify the temporal variation of dissolved organic matter(DOM) in five distinct waterbodies in watersheds with diverse types of land use and land cover in the presence and absence of sunlight. The water bodies were an agricultural pond, a lake in a forested watershed, a man-made reservoir, an estuary, and a bay. Two sets of samples were prepared by dispensing unfiltered samples into filtered samples in 1:10 ratio(V/V). The first set was exposed to sunlight(10 hr per day for 30 days) for examining the combined effect of photo-biodegradation, while the second set was stored in dark for examining biodegradation alone. Spectroscopic measurements in tandem with multivariate statistics were used to interpret DOM lability and composition. The results suggest that the agricultural pond behaved differently compared to other study locations during degradation experiments due to the presence of higher amount of microbial humic-like and protein-like components derived from microbial/anthropogenic sources. For all samples, a larger decrease in dissolved organic carbon(DOC) concentration(10.12% ±9.81% for photo-biodegradation and 6.65% ± 2.83% for biodegradation) and rapid transformation of DOM components(i.e., terrestrial humic-like components into microbial humic and protein-like components) were observed during photo-biodegradation experiments.Results suggest that sunlight facilitated DOM biodegradation, resulting in simpler recalcitrant molecules regardless of original composition. Overall, it was found that combined effects of light and bacteria are more efficient than bacterial effects alone in remineralizing and altering DOM, which highlights the crucial importance of sunlight in transforming aquatic DOM.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

17.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

18.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

19.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

20.
Single and joint effects of pesticides and mercury on soil urease   总被引:3,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号