首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
对交替好氧 缺氧短程硝化反硝化生物脱氮工艺中曝气和搅拌时间的控制模式进一步研究 .结果表明 ,ORP(氧化还原电位 )和pH的一阶和二阶导数变化可以作为控制交替好氧和缺氧运行方式的过程控制参数 .在此基础上 ,建立了控制交替好氧和缺氧时间的过程控制模式 .按照所建立的过程控制模式对进水COD、氨氮和总氮浓度分别为 194 5 5~ 92 4 90mg·L-1,2 5 6 8~ 81 4 8mg·L-1和 36 4 6~ 90 5 5mg·L-1.的废水实施交替好氧 缺氧控制 ,经过 2个月的运行 ,COD、氨氮和总氮的下降率和去除率仍然保持在 90 % ,99%和 92 % .因此 ,交替好氧 缺氧短程硝化反硝化生物脱氮工艺控制模式是可行的 ,它不但科学地分配了好氧和缺氧时间 ,提高了反应速率 ,而且为最终实现该工艺的模糊控制奠定了理论基础  相似文献   

2.
交替好氧/缺氧短程硝化反硝化生物脱氮Ⅰ.方法实现与控制   总被引:22,自引:1,他引:22  
采用实时控制策略和曝气 搅拌交替运行方式在 ( 2 6± 1 )℃下开发了一种新型短程硝化反硝化生物脱氮工艺 :实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺 .并对其与实时控制传统SBR法短程硝化反硝化脱氮和预先设定时间控制交替好氧 缺氧短程硝化反硝化脱氮工艺进行了比较研究 .结果显示 ,实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺无论从硝化速率、反硝化速率还是从硝化时间、反硝化时间上均优于实时控制传统SBR法短程硝化反硝化脱氮和预先设定时间控制交替好氧 缺氧短程硝化反硝化脱氮两种工艺 .其硝化速率和反硝化速率分别是预先设定时间控制交替好氧 缺氧短程硝化反硝化工艺的 1 3 8倍和 1 2 5倍 ,是实时控制传统SBR法短程硝化反硝化脱氮工艺的 1 82倍和 1 6 1倍 .因此 ,实时控制交替好氧 缺氧短程硝化反硝化脱氮工艺不但能够合理分配曝气和搅拌时间 ,而且还能提高硝化、反硝化速率 ,缩短反应时间 ,从而达到降低运行成本的目的  相似文献   

3.
为研究不同缺氧好氧比对半亚硝化稳定性的影响,采用连续流反应器,在常温(22~25 ℃),DO(0.3~0.5mg/L)和FA协同作用下实现了全亚硝化后,转变进水为AO除磷二级出水,并逐步向半亚硝化过渡.在此过程中考察了不同缺氧好氧比(0:1、1:1、2:1和3:1)对半亚硝化稳定性的影响.结果表明,缺氧好氧比为0:1时,很难维持低NH4+-N(40~70mg/L)亚硝化的稳定,缺氧好氧比为1:1、2:1、3:1时均能维持稳定的半亚硝化效果,相比之下缺氧好氧比为3:1时更加节能;在缺氧好氧比0:1,1:1,2:1,和3:1的过程中,氨利用速率分别提高了29.57%、44.27%、45.23%、49.63%.在整个过程中污泥沉降性能良好,SVI在65~130mL/g.  相似文献   

4.
《环境科学与技术》2021,44(4):158-164
该文以人工模拟的高C/N比(10)废水为处理对象,利用缺氧/好氧交替和高曝气的运行方式,以城市生活污水处理厂污泥作为接种污泥,研究了好氧反硝化序批式活性污泥反应器(SBR反应器)的启动过程。结果表明:在SBR反应器启动45 d后,出现明显的好氧反硝化过程;继续培养25 d,好氧反硝化SBR反应器的脱氮效率达到稳定。当反应器污泥负荷为0.11 kg COD/(kg MLSS·d)时,好氧反硝化SBR反应器对COD、总氮和氨氮的去除效率分别为(94.97%±0.53%)、(90.37%±5.89%)和(99.18%±0.34%)。城市生活污水处理厂污泥可用于好氧反硝化生物脱氮工艺的启动,缺氧/好氧交替和高曝气的方式可以加速好氧反硝化工艺的启动。  相似文献   

5.
刘安迪  赵凯亮  刘宏  黄利  倪蓉  陈永志 《环境科学》2019,40(10):4569-4577
试验采用SBR反应器处理低C/N生活污水,在温度为(25±0. 5)℃时,分别采用交替缺氧/好氧4次、交替好氧/缺氧5次和交替好氧/缺氧4次,时间比均为30 min∶30 min,NO2--N积累率在69、63和58周期分别达到96. 79%、98. 80%和98. 78%;同样温度下,控制好氧/缺氧时间比分别为30 min∶30 min、40 min∶20 min和30 min∶60 min,单周期交替次数为5、3和5时,NO2--N积累率于63、73及78周期时达到最大,其分别为98. 81%、97. 71%和94. 64%,对应AOB活性分别为96. 30、99. 27及102. 26,对其进行物料衡算,3种好氧/缺氧时间比下均存在同步硝化反硝化,同步硝化反硝化去除总氮分别为29. 89、28. 77及29. 78 mg·L-1.调整温度分别为18、25和30℃,在好氧/缺氧时间比为30 min∶30 min时,在第90、64和61周期时NO2--N积累率分别为99. 58%、99. 21%和95. 93%,污泥活性(f)达到最大所需时间分别为64、40及48周期,且污泥沉降性能均良好.  相似文献   

6.
短程硝化反硝化去除高氨氮猪场废水中的氮   总被引:8,自引:0,他引:8       下载免费PDF全文
对比分析了运用缺氧/好氧SBR工艺处理2种COD/N不同的废水的脱氮效果,结果表明,2种废水的脱氮主要是通过短程硝化反硝化实现的,反应器中的NH4+-N浓度和pH值是控制亚硝酸型硝化的重要因素,经过部分厌氧消化的废水由于保持了较高的COD/N,脱氮效果明显好于完全厌氧消化废水,NH4+-N去除率达到98%以上,但出水反硝化不完全,投加乙酸钠后出水NOx--N由100~120mg/L减少到10~20mg/L,乙酸钠投加量以275mg/L为宜.  相似文献   

7.
王文琪  李冬  高鑫  张杰 《环境科学》2021,42(9):4406-4413
采用生活污水接种人工配水下成熟短程硝化反硝化除磷颗粒,通过不同好氧/缺氧时长联合分区排泥优化调控短程硝化反硝化除磷系统运行.结果表明,调控好氧/缺氧时长联合分区排泥可实现系统的稳定运行.后期稳定期出水COD浓度在50mg·L-1以下,出水TN浓度低于15mg·L-1,TN去除率达83%左右并保持平稳,出水P浓度均在0.5mg·L-1以下,平均去除率为93.72%.同时,分区排泥(70%顶部污泥和30%底部污泥)可作为筛选微生物的途径,维持了良好的亚硝化和除磷性能,使粒径分布更为集中,并保证氨氧化菌(ammonia oxidizing bacteria,AOB)和反硝化聚磷菌(denitrifying phosphate accumulating organisms,DPAOs)的生长优势.缺氧时长的增加提高了缺氧异养菌的生长速率,使得缺氧异养菌分泌出更多的EPS,确保了颗粒污泥性状的改善和后续维持稳定.  相似文献   

8.
曲洋  张培玉  于德爽  郭沙沙  杨瑞霞 《环境科学》2010,31(10):2376-2384
研究了异养硝化-好氧反硝化菌应用于短程硝化系统的可行性.采用生物强化技术将4株高效异养硝化-好氧反硝化菌投入耐盐短程硝化污泥中,考察了其对含海水污水的SBR短程硝化系统的强化效果,并比较了强化系统与原系统的差异性.结果表明,强化系统的NO2--N最大积累量比原系统降低34.92%,而且到达NO2--N最大积累量的时间比原系统提前2h.强化系统的TN和COD在硝化段中后期持续降低,硝化结束时其TN和COD去除率比原系统高出15.24%和5.39%,NH4+-N去除率和亚硝化率比原系统高出6.85%和14.47%.强化系统的pH比原系统高0.46,而ORP低25.84mV.强化系统的性能提升是由强化菌的异养硝化作用和好氧反硝化作用引起的.当受到70%海水盐度冲击时,强化系统的稳定性高于原系统,强化菌的加入有效地抑制了系统从短程硝化向全程硝化转变的趋势.在强化系统与原系统运行的各阶段,强化菌种的数量发生了变化,且随着系统排泥强化菌大量流失.本研究为异养硝化-好氧反硝化菌应用于短程脱氮系统的可行性提供了理论参考.  相似文献   

9.
缺氧/好氧SBR工艺去除亚铵法造纸废水中的氮   总被引:7,自引:2,他引:7  
孙剑辉  魏瑞霞 《环境科学》2001,22(4):117-119
采用反应期缺氧/好氧SBR工艺去除亚铵法造纸废水中氮的研究结果表明:该工艺脱氮的最佳操作条件为:缺氧、好氧时间比1:1.5,运行周期为8h;SRT≥12d,NH3-N负荷率<0.063g/(g·d);当进水中CODcr浓度为1200~1800mg/L,NH3-N浓度为135~200mg/L,NOx-N浓度为7~10mg/L时,没有外加碳源时,氨氮的去除率为95%,总氮的去除率为66%,投加乙酸钠后,总氮的去除率提高到85%;投加乙酸钠的量为125mg/L(以CODCr计)最经济、有效.  相似文献   

10.
在连续流反应器中接种成熟好氧颗粒污泥(AGS)处理低氨氮污水,通过控制溶解氧(DO)和出水氨氮(NH4+-N)的浓度,研究了控制DO/NH4+-N(R值)实现连续流好氧颗粒污泥系统短程硝化的可行性和不同温度(30、20、10℃)条件下实现短程硝化系统对R值的需求.结果表明,通过比值控制,连续流好氧颗粒污泥系统可以快速实现短程硝化;在30、20、10℃条件下,系统实现短程硝化所需要的R值分别为0.50(±0.05)、0.35(±0.03)和0.20(±0.02).因此可知,温度越低,系统实现短程硝化所需要的氧抑制越强.采用荧光原位杂交(fluorescence in situ hybridization,FISH)实验表明,通过比值控制,氨氧化菌(AOB)得到一定的富集,而亚硝酸盐氧化菌(NOB)的相对数量逐渐减少.基于比值控制和污水水质的特点,选择短程硝化的方式有所不同,低氨氮废水选择半量亚硝化,而高氨氮污水则选择全量亚硝化.  相似文献   

11.
短程硝化过程是短程生物脱氮工艺中的限速步骤,在保证稳定亚硝化率的前提下,提高曝气量能够提高好氧氨氧化菌的活性,进而提高氨氧化速率.本文在序批式反应器中,通过改变曝气量,在高溶解氧条件下,考察不同曝气量对短程硝化的性能及微生物的影响.结果 表明,随着曝气量的增大,氨氧化速率不断升高.单位体积曝气量为0.8、1.7、3.3...  相似文献   

12.
吴军  张悦  徐婷  严刚 《中国环境科学》2016,36(12):3583-3590
经精确测定AOB和NOB的溶解氧半速度常数及其他动力学参数,研究在AOB溶解氧亲和力低于NOB条件下,在序批反应器中短程硝化实现机制.测得AOB和NOB的溶解氧半速度常数分别为0.46和0.14mg O2/L.在这种条件下,AOB的最大比生长速率高于NOB是实现短程硝化的重要特点,测得的AOB和NOB最大比生长速率分别为0.65和0.45d-1.两级硝化数学模拟的结果表明,在AOB的溶解氧亲和力低于NOB条件下,低溶解氧和高泥龄都不利于短程硝化实现,而较高溶解氧和低泥龄的组合条件有利于短程硝化实现.在序批反应中的实验结果验证了数学模拟结论的正确性.  相似文献   

13.
赵丹  于德爽  李津  汪晓晨 《环境科学学报》2013,33(11):3007-3016
从稳定运行的ASBR厌氧氨氧化反应器中分离筛选出一株在缺氧和好氧条件下均具有高效反硝化能力的菌株ZD8,该菌株为假单胞属(Pseudomonas sp.),大小2 μm×0.25 μm,无鞭毛和芽孢.实验结果表明,缺氧条件下,ZD8最适合的碳源为柠檬酸钠;当C/N为10时,具有最佳的反硝化效果.菌株ZD8在缺氧条件下不具有硝化能力.在好氧条件下菌株ZD8获得最佳反硝化效果的C/N为22,最适合pH范围是7.2~9.9.菌株ZD8在好氧条件下具有高效的异养硝化能力,NH4+-N平均去除速率为8.3 mg·L-1·h-1.当以KNO3为氮源时ZD8的反硝化速率为13.1 mg·L-1·h-1;而以NaNO2为氮源时,其反硝化速率为6.98 mg·L-1·h-1.在同时存在NH4+-N和NO3--N或NH4+-N和NO2--N的系统中,菌株ZD8均首先利用NH4+-N发生硝化作用,NH4+-N的存在对反硝化具有抑制作用,并且NH4+-N对NO2--N的反硝化抑制作用更强;在同时存在NO3--N和NO2--N的系统中,菌株ZD8优先利用NO3--N进行好氧反硝化脱氮.  相似文献   

14.
采用序批式生物反应器(SBR)处理模拟氨氮废水,考察了SBR体系中硝化过程中氮组分和溶解氧变化规律,并对硝化动力学进行了研究.结果表明,在低溶解氧下,体系出现亚硝态氮积累;在序批式反应体系中的硝化反应呈现三阶段,即零级反应段、混合反应段和一级反应段,其硝化特性符合Monod动力学方程;根据SBR实现选择性硝化过程控制方法,实现了SBR选择性亚硝化启动,该体系氨氮出水1 mg·L~(-1),氨氮负荷达0.45 kg·kg~(-1)·d~(-1)(以每kg MLSS中的NH_4~+-N量(kg)计),亚硝态氮累积率达95%左右.  相似文献   

15.
溶解氧对序批式全程自养脱氮工艺运行的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
在常温22~26℃下,接种成熟的全程自养脱氮(CANON)污泥至2个相同的SBR反应器,通过设置不同的初期DO及不同的DO梯度,考察了DO控制策略及DO值对CANON工艺脱氮性能,稳定性及污泥形态的影响.结果表明,初期DO为0.05~0.10mg/L的反应器可以稳定运行,氨氮和总氮的平均去除率分别为99%和85.4%,而初期DO为(0.40±0.5)mg/L的反应器的氨氮和总氮平均去除率分别为99%和0;在反应器运行稳定之后,逐渐增加DO浓度, DO为0,0.2,0.4,0.5mg/L时的厌氧氨氧化反应速率分别为35.95,23.89,31.50,19.25mgN/(L·h),延时曝气2h后反应器仍可正常运行.在一定DO范围内,CANON反应器的活性随着DO的升高而升高,较高DO对接种初期的CANON反应器冲击较大且不可逆,对稳定运行的CANON反应器的影响较小;但是当CANON工艺稳定运行之后,短时高DO对CANON工艺的影响是可逆的.显微镜照片显示稳定运行的CANON反应器内出现了颗粒化的趋势.  相似文献   

16.
模拟缺氧/好氧(A/O)模式运行的序批式活性污泥法(SBR)处理系统,探究利用羟胺实现城市污水短程硝化的投加点优化.批次实验发现,溶解氧存在会降低羟胺对亚硝酸盐氧化菌(NOB)抑制效果的(20±0.5)%.此外,相较于未经缺氧处理和延长缺氧时间(>15min)处理,缺氧时间为l~5min可提高NOB活性抑制率13%~2...  相似文献   

17.
序批式膜反应器同步硝化和反硝化的特性   总被引:5,自引:0,他引:5       下载免费PDF全文
为提高污水生物脱氮处理的效率和减少外加碳源,研究了序批式膜反应器(SBBR)在有氧情况下处理生活污水中同步硝化和反硝化的特性.试验表明,原水TN为80~110mg/L和溶解氧浓度为0.8~4.0mg/L情况下,出水TN小于15mg/L,NH3-N去除率达100%,TN去除率54%~77%,NH3-N容积负荷率为47~94mg/(L·d),TN容积负荷率为56~113mg/(L·d).TN的变化规律为在NH3-N降到零或最小之前,TN持续降低之后,TN有短时的上升后再缓慢降低.在较大的溶解氧浓度范围内,SBBR具有同步硝化和反硝化的能力,建议将NH3-N降解到零或最小值的时刻,作为同步硝化和反硝化的结束点.  相似文献   

18.
HCO3-在部分亚硝化中功能及对亚硝化效能影响   总被引:1,自引:0,他引:1  
通过接种成熟的亚硝化生物膜研究了HCO3-在部分亚硝化过程的主要功能,为部分亚硝化-厌氧氨氧化联合工艺处理高氨氮低碳废水时亚硝化段碳源需求提供依据.结果表明,维持进水氨氮浓度不变,通过降低HCO3-浓度将进水C/N比维持在1.8时,反应器内亚硝化效能达到0.99kg/(m3·d);逐步降低C/N比至0.5时,因HCO3-不够维持亚硝化体系pH值环境,导致亚硝化效能下降至0.67kg/(m3·d).C/N比维持在0.75时,基本能够维持亚硝化过程所需要pH值为8的环境.亚硝化过程中HCO3-的消耗量与亚硝化效能具有明显的线性关系.当利用低浓度强碱将反应器内pH值维持在8时,空气和水中微量碳源就能够满足亚硝化过程的碳源需求,亚硝化效能最高达到1.28kg/(m3·d).说明HCO3-在部分亚硝化过程中主要功能是中和亚硝化过程产生的H+,维持亚硝化菌所需要的pH值环境.  相似文献   

19.
静置/好氧/缺氧序批式反应器(SBR)脱氮除磷效果研究   总被引:4,自引:1,他引:4  
以静置段代替传统厌氧段,采用后置缺氧方式,考察了静置/好氧/缺氧序批式反应器(SBR)(R1)的生物脱氮除磷(BNR)性能,并与传统厌氧/好氧/缺氧序批式反应器(SBR)(R2)进行对比.两反应器进水乙酸钠、氨氮(NH+4-N)及磷酸盐(PO3-4-P)浓度均分别为350 mg·L-1(以COD计)、40 mg·L-1及12 mg·L-1,水力停留时间(HRT)为12 h.研究结果表明,R1长期运行中磷的去除率与R2相当,分别为92.4%和92.1%,而总氮(TN)去除率则较R2高,分别为83.5%和77.0%.R1静置段省去搅拌但仍能起到厌氧段的作用,为好氧快速摄磷奠定了基础,同时R1缺氧段发生反硝化摄磷,使出水磷降至0.91 mg·L-1.好氧段内R1发生了同步硝化-反硝化(SND),贡献了18.0%的TN去除量,R2也存在SND,但脱氮贡献率较少,仅为9.8%.R1和R2后置缺氧反硝化均以糖原驱动,反硝化速率分别为0.98、0.84 mg·g-1·h-1(以每g VSS产生的N(mg)计),出水TN分别为6.62、9.21 mg·L-1.研究表明,静置段代替传统厌氧段后,可获得更好的脱氮效果,且工艺更为简化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号