首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anticipated future increases in air temperature and regionally variable changes in precipitation will have direct and cascading effects on United States (U.S.) water quality. In this paper, and a companion paper by Coffey et al., we review technical literature addressing the responses of different water quality attributes to historical and potential future changes in air temperature and precipitation. The goal is to document how different attributes of water quality are sensitive to these drivers, to characterize future risk to inform management responses, and to identify research needs to fill gaps in our understanding. Here we focus on potential changes in streamflow, water temperature, and salt water intrusion (SWI). Projected changes in the volume and timing of streamflow vary regionally, with general increases in northern and eastern regions of the U.S., and decreases in the southern Plains, interior Southwest, and parts of the Southeast. Water temperatures have increased throughout the U.S. and are expected to continue to increase in the future, with the greatest changes in locations where high summer air temperatures occur together with low streamflow volumes. In coastal areas, especially the mid‐Atlantic and Gulf coasts, SWI to rivers and aquifers could be exacerbated by sea level rise, storm surges, and altered freshwater runoff. Management responses for reducing risks to water quality should consider strategies and practices robust to a range of potential future conditions.  相似文献   

2.
ABSTRACT: Protecting surface water quality in watersheds undergoing demographic change requires both the management of existing threats and planning to address potential future stresses arising from changing land use. Many reservoirs and threatened waterbodies are located in areas undergoing rapid population growth, and increases in density of residential and commercial land use, accompanied by increased amount of impervious surface area, can result in increased pollutant loading and degradation of water quality. Effective planning to address potential threats, including zoning and growth management, requires analytical tools to predict and compare the impacts of different management options. The focus of this paper is not on developing demographic projections, but rather the translation of such projections into changes in land use which form the basis for assessment of future watershed loads. Land use change can be forecast at a variety of spatial and temporal scales. A semi-lumped, GIS-based, transition matrix approach is recommended as consistent with the level of complexity achievable in most watershed models. Practical aspects of forecasting future land use for watershed assessment are discussed. Several recent reservoir water supply projection studies are used to demonstrate a general framework for simulating changes in land use and resulting impacts on water quality. In addition to providing a technical basis for selecting optimal management alternatives, such a tool is invaluable for demonstrating to different stakeholder groups the trade-offs among management alternatives, both in terms of water quality and future land use patterns within the watershed.  相似文献   

3.
ABSTRACT: Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa Clara‐Calleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate‐driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/°C, compared to 0.9 m/°C in observations. This close agreement shows that the GCM‐RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM‐RGWM combination could be used for planning purposes and — when the GCM forecast skills are adequate — for near term predictions.  相似文献   

4.
5.
ABSTRACT: Although the curve number method of the Natural Resources Conservation Service has been used as the foundation of the hydrology algorithms in many nonpoint source water quality models, there are significant problematic issues with the way it has been implemented and interpreted that are not generally recognized. This usage is based on misconceptions about the meaning of the runoff value that the method computes, which is a likely fundamental cause of uncertainty in subsequent erosion and pollutant loading predictions dependent on this value. As a result, there are some major limitations on the conclusions and decisions about the effects of management practices on water quality that can be supported with current nonpoint source water quality models. They also cannot supply the detailed quantitative and spatial information needed to address emerging issues. A key prerequisite for improving model predictions is to improve the hydrologic algorithms contained within them. The use of the curve number method is still appropriate for flood hydrograph engineering applications, but more physically based algorithms that simulate all streamflow generating processes are needed for nonpoint source water quality modeling. Spatially distributed hydrologic modeling has tremendous potential in achieving this goal.  相似文献   

6.
ABSTRACT: This study assesses the potential impact of climate change on stream flow and nutrient loading in six watersheds of the Susquehanna River Basin using the Generalized Watershed Loading Function (GWLF). The model was used to simulate changes in stream flow and nutrient loads under a transient climate change scenario for each watershed. Under an assumption of no change in land cover and land management, the model was used to predict monthly changes in stream flow and nutrient loads for future climate conditions. Mean annual stream flow and nutrient loads increased for most watersheds, but decreased in one watershed that was intensively cultivated. Nutrient loading slightly decreased in April and late summer for several watersheds as a result of early snowmelt and increasing evapotranspiration. Spatial and temporal variability of stream flow and nutrient loads under the transient climate scenario indicates that different approaches for future water resource management may be useful.  相似文献   

7.
Stream temperatures are key indicators for aquatic ecosystem health, and are of particular concern in highly seasonal, water‐limited regions such as California that provide sensitive habitat for cold‐water species. Yet in many of these critical regions, the combined impacts of a warmer climate and urbanization on stream temperatures have not been systematically studied. We examined recent changes in air temperature and precipitation, including during the recent extreme drought, and compared the stream temperature responses of urban and nonurban streams under four climatic conditions and the 2008–2018 period. Metrics included changes in the magnitude and timing of stream temperatures, and the frequency of exceedance of ecologically relevant thresholds. Our results showed that minimum and average daily air temperatures in the region have increased by >1°C over the past 20 years, warming both urban and nonurban streams. Stream temperatures under drought warmed most (1°C–2°C) in late spring and early fall, effectively lengthening the summer warm season. The frequency of occurrence of periods of elevated stream temperatures was greater during warm climate conditions for both urban and nonurban streams, but urban streams experienced extreme conditions 1.5–2 times as often as nonurban streams. Our findings underscore that systematically monitoring and managing urban stream temperatures under climate change and drought is critically needed for seasonal, water‐limited urban systems.  相似文献   

8.
ABSTRACT: We apply a physically based lake model to assess the response of North American lakes to future climate conditions as portrayed by the transient trace-gas simulations conducted with the Max Planck Institute (ECHAM4) and the Canadian Climate Center (CGCM1) atmosphere-ocean general circulation models (A/OGCMs). To quantify spatial patterns of lake responses (temperature, mixing, ice cover, evaporation) we ran the lake model for theoretical lakes of specified area, depth, and transparency over a uniformly spaced (50 km) grid. The simulations were conducted for two 10-year periods that represent present climatic conditions and those around the time of CO2 doubling. Although the climate model output produces simulated lake responses that differ in specific regional details, there is broad agreement with regard to the direction and area of change. In particular, lake temperatures are generally warmer in the future as a result of warmer climatic conditions and a substantial loss (> 100 days/yr) of winter ice cover. Simulated summer lake temperatures are higher than 30°C over the Midwest and south, suggesting the potential for future disturbance of existing aquatic ecosystems. Overall increases in lake evaporation combine with disparate changes in A/OGCM precipitation to produce future changes in net moisture (precipitation minus evaporation) that are of less fidelity than those of lake temperature.  相似文献   

9.
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976‐2012 compared to 1939‐1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (< 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface‐water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.  相似文献   

10.
Anticipating changes in hydrologic variables is essential for making socioeconomic water resource decisions. This study aims to assess the potential impact of land use and climate change on the hydrologic processes of a primarily rain‐fed, agriculturally based watershed in Missouri. A detailed evaluation was performed using the Soil and Water Assessment Tool for the near future (2020–2039) and mid‐century (2040–2059). Land use scenarios were mapped using the Conversion of Land Use and its Effects model. Ensemble results, based on 19 climate models, indicated a temperature increase of about 1.0°C in near future and 2.0°C in mid‐century. Combined climate and land use change scenarios showed distinct annual and seasonal hydrologic variations. Annual precipitation was projected to increase from 6% to 7%, which resulted in 14% more spring days with soil water content equal to or exceeding field capacity in mid‐century. However, summer precipitation was projected to decrease, a critical factor for crop growth. Higher temperatures led to increased potential evapotranspiration during the growing season. Combined with changes in precipitation patterns, this resulted in an increased need for irrigation by 38 mm representing a 10% increase in total irrigation water use. Analysis from multiple land use scenarios indicated converting agriculture to forest land can potentially mitigate the effects of climate change on streamflow, thus ensuring future water availability.  相似文献   

11.
A two-stage inexact joint-probabilistic programming (TIJP) method is developed for planning a regional air quality management system with multiple pollutants and multiple sources. The TIJP method incorporates the techniques of two-stage stochastic programming, joint-probabilistic constraint programming and interval mathematical programming, where uncertainties expressed as probability distributions and interval values can be addressed. Moreover, it can not only examine the risk of violating joint-probability constraints, but also account for economic penalties as corrective measures against any infeasibility. The developed TIJP method is applied to a case study of a regional air pollution control problem, where the air quality index (AQI) is introduced for evaluation of the integrated air quality management system associated with multiple pollutants. The joint-probability exists in the environmental constraints for AQI, such that individual probabilistic constraints for each pollutant can be efficiently incorporated within the TIJP model. The results indicate that useful solutions for air quality management practices have been generated; they can help decision makers to identify desired pollution abatement strategies with minimized system cost and maximized environmental efficiency.  相似文献   

12.
/ Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients, much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils, RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater, sediment in surface runoff, and total N in both surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment, sustainability, and management are also discussed.KEY WORDS: Riparian forest buffers; Chesapeake Bay; Nonpoint source pollution; Nitrogen; Phosphorus; Sediment  相似文献   

13.
We present a conceptual framework that relates agricultural best management practice (BMP) effectiveness with dominant hydrological flow paths to improve nonpoint source (NPS) pollution management. We use the framework to analyze plot, field and watershed scale published studies on BMP effectiveness to develop transferable recommendations for BMP selection and placement at the watershed scale. The framework is based on the location of the restrictive layer in the soil profile and distinguishes three hydrologic land types. Hydrologic land type A has the restrictive layer at the surface and BMPs that increase infiltration are effective. In land type B1, the surface soil has an infiltration rate greater than the prevailing precipitation intensity, but there is a shallow restrictive layer causing lateral flow and saturation excess overland flow. Few structural practices are effective for these land types, but pollutant source management plans can significantly reduce pollutant loading. Hydrologic land type B2 has deep, well‐draining soils without restrictive layers that transport pollutants to groundwater via percolation. Practices that increased pollutant residence time in the mixing layer or increased plant water uptake were found as the most effective BMPs in B2 land types. Matching BMPs to the appropriate land type allows for better targeting of hydrologically sensitive areas within a watershed, and potentially more significant reductions of NPS pollutant loading.  相似文献   

14.
ABSTRACT: We review published analyses of the effects of climate change on goods and services provided by freshwater ecosystems in the United States. Climate-induced changes must be assessed in the context of massive anthropogenic changes in water quantity and quality resulting from altered patterns of land use, water withdrawal, and species invasions; these may dwarf or exacerbate climate-induced changes. Water to meet instream needs is competing with other uses of water, and that competition is likely to be increased by climate change. We review recent predictions of the impacts of climate change on aquatic ecosystems in eight regions of North America. Impacts include warmer temperatures that alter lake mixing regimes and availability of fish habitat; changed magnitude and seasonality of runoff regimes that alter nutrient loading and limit habitat availability at low flow; and loss of prairie pothole wetlands that reduces waterfowl populations. Many of the predicted changes in aquatic ecosystems are a consequence of climatic effects on terrestrial ecosystems; shifts in riparian vegetation and hydrology are particularly critical. We review models that could be used to explore potential effects of climate change on freshwater ecosystems; these include models of instream flow, bioenergetics models, nutrient spiraling models, and models relating riverine food webs to hydrologic regime. We discuss potential ecological risks, benefits, and costs of climate change and identify information needs and model improvements that are required to improve our ability to predict and identify climate change impacts and to evaluate management options.  相似文献   

15.
Nonpoint source pollution control requires assessment of the influence of dispersed runoff-contributing areas on downstream water quality. This evaluation must consider two separate phases: site-to-stream loading and downstream fluvial transport. Any model, combination of models, or procedure for making this assessment can be generalized to a simple spatial model or framework, which considers runoff or pollutant loading per unit area and down-stream attenuation, with drainage area as a scaling factor. This spatial model has a probabilistic interpretation and can be used in conjunction with a standard dilution model to give a probabilistic estimate of the impacts at the basin mouth of runoff from a specific upstream contributing area. It is illustrated by applying it to an assessment of the probability that various copper concentrations at the mouth of the urbanized South Platte River basin in Denver, Colorado, USA, will be exceeded as a result of runoff from a subbasin within the city. Determining the probability that a concentration of a pollutant at the basin mouth can be attributed to runoff from a discrete area within the basin is useful for targeting and risk assessment because it enables quantitative risk-based comparisons. The spatial framework is also useful for evaluating management and control options, since actions within the basin can be directly linked to water quality at a downstream point.  相似文献   

16.
ABSTRACT: We assessed the potential effects of increased temperature and changes in amount and seasonal timing of precipitation on the hydrology and vegetation of a semi-permanent prairie wetland in North Dakota using a spatially-defined, rule-based simulation model. Simulations were run with increased temperatures of 2°C combined with a 10 percent increase or decrease in total growing season precipitation. Changes in precipitation were applied either evenly across all months or to individual seasons (spring, summer, or fall). The response of semi-permanent wetland P1 was relatively similar under most of the seasonal scenarios. A 10 percent increase in total growing season precipitation applied to summer months only, to fall months only, and over all months produced lower water levels compared to those resulting from the current climate due to increased evapotranspiration. Wetland hydrology was most affected by changes in spring precipitation and runoff. Vegetation response was relatively consistent across scenarios. Seven of the eight seasonal scenarios produced drier conditions with no open water and greater vegetation cover compared to those resulting from the current climate. Only when spring precipitation increased did the wetland maintain an extensive open water area (49 percent). Potential changes in climate that affect spring runoff, such as changes to spring precipitation and snow melt, may have the greatest impact on prairie wetland hydrology and vegetation. In addition, relatively small changes in water level during dry years may affect the period of time the wetland contains open water. Emergent vegetation, once it is established, can survive under drier conditions due to its ability to persist in shallow water with fluctuating levels. The model's sensitivity to changes in temperature and seasonal precipitation patterns accentuates the need for accurate regional climate change projections from general circulation models.  相似文献   

17.
In the Wasatch Range Metropolitan Area of Northern Utah, water management decision makers confront multiple forms of uncertainty and risk. Adapting to these uncertainties and risks is critical for maintaining the long‐term sustainability of the region's water supply. This study draws on interview data to assess the major challenges climatic and social changes pose to Utah's water future, as well as potential solutions. The study identifies the water management adaptation decision‐making space shaped by the interacting institutional, social, economic, political, and biophysical processes that enable and constrain sustainable water management. The study finds water managers and other water actors see challenges related to reallocating water, including equitable water transfers and stakeholder cooperation, addressing population growth, and locating additional water supplies, as more problematic than the challenges posed by climate change. Furthermore, there is significant disagreement between water actors over how to best adapt to both climatic and social changes. This study concludes with a discussion of the path dependencies that present challenges to adaptive water management decision making, as well as opportunities for the pursuit of a new water management paradigm based on soft‐path solutions. Such knowledge is useful for understanding the institutional and social adaptations needed for water management to successfully address future uncertainties and risks.  相似文献   

18.
Rapidly growing cities along the Interstate-85 corridor from Atlanta, GA, to Raleigh, NC, rely on small rivers for water supply and waste assimilation. These rivers share commonalities including water supply stress during droughts, seasonally low flows for wastewater dilution, increasing drought and precipitation extremes, downstream eutrophication issues, and high regional aquatic diversity. Further challenges include rapid growth; sprawl that exacerbates water quality and infrastructure issues; water infrastructure that spans numerous counties and municipalities; and large numbers of septic systems. Holistic multi-jurisdiction cooperative water resource planning along with policy and infrastructure modifications is necessary to adapt to population growth and climate. We propose six actions to improve water infrastructure resilience: increase water-use efficiency by municipal, industrial, agricultural, and thermoelectric power sectors; adopt indirect potable reuse or closed loop systems; allow for water sharing during droughts but regulate inter-basin transfers to protect aquatic ecosystems; increase nutrient recovery and reduce discharges of carbon and nutrients in effluents; employ green infrastructure and better stormwater management to reduce nonpoint pollutant loadings and mitigate urban heat island effects; and apply the CRIDA framework to incorporate climate and hydrologic uncertainty into water planning.  相似文献   

19.
Models for pollutant runoff can be useful in water quality management planning if appropriately structured for the problem at hand. Accordingly, a “top-down” approach is proposed for the examination of extant pollutant runoff models. The approach consists of the identification of objectives and attributes that reflect the needs of planners and decision makers when these models are used for water quality management planning. Ideally, the attributes should concern the effect of model information on improved decision making and the cost of model application. Practical difficulties with the first attribute necessitates substitution of surrogate attributes reflecting model appropriateness, resolution, and uncertainty. Common pollutant runoff models, in particular export coefficients and hydrology-driven simulation models, are found to have serious weaknesses on some of the attribute scales. The “top-down” approach leads to a set of desirable pollutant runoff model attributes; alternate modeling techniques are thus examined in order to identify promising future directions for model development. The focus of this examination is phosphorus, due to its importance in the eutrophication of surface waters. Models for both sediment-attached and dissolved phosphorus are considered. Among the conclusions is the belief that the partial contributing area concept can yield an effective yet simple simulation despite the variable and complex nature of runoff.  相似文献   

20.
ABSTRACT: Climate change has the potential to have dramatic effects on the agricultural sector nationally and internationally as documented in many research papers. This paper reports on research that was focused on a specific crop growing area to demonstrate how farm managers might respond to climate-induced yield changes and the implications of these responses for agricultural water use. The Hadley model was used to generate climate scenarios for important agricultural areas of Georgia in 2030 and 2090. Linked crop response models indicated generally positive yield changes, as increased temperatures were associated with increased precipitation and CO2. Using a farm management model, differences in climate-induced yield impacts among crops led to changes in crop mix and associated water use; non-irrigated cropland received greater benefit since irrigated land was already receiving adequate moisture. Model results suggest that farm managers will increase cropping intensity by decreasing fallowing and increasing double cropping; corn acreage decreased dramatically, peanuts decreased moderately and cotton and winter wheat increased. Water use on currently irrigated cropland fell. The potential for increased water use through conversion of agriculturally important, but currently non-irrigated, growing areas is substantial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号