共查询到20条相似文献,搜索用时 15 毫秒
1.
Kline, Michael and Barry Cahoon, 2010. Protecting River Corridors in Vermont. Journal of the American Water Resources Association (JAWRA) 46(2):227-236. DOI: 10.1111/j.1752-1688.2010.00417.x Abstract: The Vermont Agency of Natural Resources’ current strategy for restoring aquatic habitat, water quality, and riparian ecosystem services is the protection of fluvial geomorphic-based river corridors and associated wetland and floodplain attributes and functions. Vermont has assessed over 1,350 miles of stream channels to determine how natural processes have been modified by channel management activities, corridor encroachments, and land use/land cover changes. Nearly three quarters of Vermont field-assessed reaches are incised limiting access to floodplains and thus reducing important ecosystem services such as flood and erosion hazard mitigation, sediment storage, and nutrient uptake. River corridor planning is conducted with geomorphic data to identify opportunities and constraints to mitigating the effects of physical stressors. Corridors are sized based on the meander belt width and assigned a sensitivity rating based on the likelihood of channel adjustment due to stressors. The approach adopted by Vermont is fundamentally based on restoring fluvial processes associated with dynamic equilibrium, and associated habitat features. Managing toward fluvial equilibrium is taking hold across Vermont through adoption of municipal fluvial erosion hazard zoning and purchase of river corridor easements, or local channel and floodplain management rights. These tools signify a shift away from primarily active management approaches of varying success that largely worked against natural river form and process, to a current community-based, primarily passive approach to accommodate floodplain reestablishment through fluvial processes. 相似文献
2.
Mary C. Freeman Catherine M. Pringle C. Rhett Jackson 《Journal of the American Water Resources Association》2007,43(1):5-14
Abstract: Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water‐mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two‐thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large‐scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free‐flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large‐scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream‐system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large‐scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity. 相似文献
3.
Physical and Chemical Connectivity of Streams and Riparian Wetlands to Downstream Waters: A Synthesis 下载免费PDF全文
Ken M. Fritz Kate A. Schofield Laurie C. Alexander Michael G. McManus Heather E. Golden Charles R. Lane William G. Kepner Stephen D. LeDuc Julie E. DeMeester Amina I. Pollard 《Journal of the American Water Resources Association》2018,54(2):323-345
Streams, riparian areas, floodplains, alluvial aquifers, and downstream waters (e.g., large rivers, lakes, and oceans) are interconnected by longitudinal, lateral, and vertical fluxes of water, other materials, and energy. Collectively, these interconnected waters are called fluvial hydrosystems. Physical and chemical connectivity within fluvial hydrosystems is created by the transport of nonliving materials (e.g., water, sediment, nutrients, and contaminants) which either do or do not chemically change (chemical and physical connections, respectively). A substantial body of evidence unequivocally demonstrates physical and chemical connectivity between streams and riparian wetlands and downstream waters. Streams and riparian wetlands are structurally connected to downstream waters through the network of continuous channels and floodplain form that make these systems physically contiguous, and the very existence of these structures provides strong geomorphologic evidence for connectivity. Functional connections between streams and riparian wetlands and their downstream waters vary geographically and over time, based on proximity, relative size, environmental setting, material disparity, and intervening units. Because of the complexity and dynamic nature of connections among fluvial hydrosystem units, a complete accounting of the physical and chemical connections and their consequences to downstream waters should aggregate over multiple years to decades. 相似文献
4.
Soni M. Pradhanang Rajith Mukundan Elliot M. Schneiderman Mark S. Zion Aavudai Anandhi Donald C. Pierson Allan Frei Zachary M. Easton Daniel Fuka Tammo S. Steenhuis 《Journal of the American Water Resources Association》2013,49(6):1308-1326
Recent works have indicated that climate change in the northeastern United States is already being observed in the form of shorter winters, higher annual average air temperature, and more frequent extreme heat and precipitation events. These changes could have profound effects on aquatic ecosystems, and the implications of such changes are less understood. The objective of this study was to examine how future changes in precipitation and temperature translate into changes in streamflow using a physically based semidistributed model, and subsequently how changes in streamflow could potentially impact stream ecology. Streamflow parameters were examined in a New York City water supply watershed for changes from model‐simulated baseline conditions to future climate scenarios (2081‐2100) for ecologically relevant factors of streamflow using the Indicators of Hydrologic Alterations tool. Results indicate that earlier snowmelt and reduced snowpack advance the timing and increase the magnitude of discharge in the winter and early spring (November‐March) and greatly decrease monthly streamflow later in the spring in April. Both the rise and fall rates of the hydrograph will increase resulting in increased flashiness and flow reversals primarily due to increased pulses during winter seasons. These shifts in timing of peak flows, changes in seasonal flow regimes, and changes in the magnitudes of low flow can all influence aquatic organisms and have the potential to impact stream ecology. 相似文献
5.
Hydrological Connectivity Between Headwater Streams and Downstream Waters: How Science Can Inform Policy1 总被引:1,自引:0,他引:1
Tracie‐Lynn Nadeau Mark Cable Rains 《Journal of the American Water Resources Association》2007,43(1):118-133
Abstract: In January 2001, the U.S. Supreme Court ruled that the U.S. Army Corps of Engineers exceeded its statutory authority by asserting Clean Water Act (CWA) jurisdiction over non‐navigable, isolated, intrastate waters based solely on their use by migratory birds. The Supreme Court’s majority opinion addressed broader issues of CWA jurisdiction by implying that the CWA intended some “connection” to navigability and that isolated waters need a “significant nexus” to navigable waters to be jurisdictional. Subsequent to this decision (SWANCC), there have been many lawsuits challenging CWA jurisdiction, many of which are focused on headwater, intermittent, and ephemeral streams. To inform the legal and policy debate surrounding this issue, we present information on the geographic distribution of headwater streams and intermittent and ephemeral streams throughout the U.S., summarize major findings from the scientific literature in considering hydrological connectivity between headwater streams and downstream waters, and relate the scientific information presented to policy issues surrounding the scope of waters protected under the CWA. Headwater streams comprise approximately 53% (2,900,000 km) of the total stream length in the U.S., excluding Alaska, and intermittent and ephemeral streams comprise approximately 59% (3,200,000 km) of the total stream length and approximately 50% (1,460,000 km) of the headwater stream length in the U.S., excluding Alaska. Hillslopes, headwater streams, and downstream waters are best described as individual elements of integrated hydrological systems. Hydrological connectivity allows for the exchange of mass, momentum, energy, and organisms longitudinally, laterally, vertically, and temporally between headwater streams and downstream waters. Via hydrological connectivity, headwater, intermittent and ephemeral streams cumulatively contribute to the functional integrity of downstream waters; hydrologically and ecologically, they are a part of the tributary system. As this debate continues, scientific input from multiple fields will be important for policymaking at the federal, state, and local levels and to inform water resource management regardless of the level at which those decisions are being made. Strengthening the interface between science, policy, and public participation is critical if we are going to achieve effective water resource management. 相似文献
6.
Daniel M. Evans Carl E. Zipper Erich T. Hester Stephen H. Schoenholtz 《Journal of the American Water Resources Association》2015,51(5):1436-1452
Surface coal mining operations alter landscapes of the Appalachian Mountains, United States, by replacing bedrock with mine spoil, altering topography, removing native vegetation, and constructing mine soils with hydrologic properties that differ from those of native soils. Research has demonstrated hydrologic effects of mining and reclamation on Appalachian landscapes include increased peakflows at newly mined and reclaimed watersheds in response to strong storm events, increased subsurface void space, and increased base flows. We review these investigations with a focus on identifying changes to hydrologic flow paths caused by surface mining for coal in the Appalachian Mountains. We introduce two conceptual control points that govern hydrologic flow paths on mined lands, including the soil surface that partitions infiltration vs. surface runoff and a potential subsurface zone that partitions subsurface storm flow vs. deeper percolation. Investigations to improve knowledge of hydrologic pathways on reclaimed Appalachian mine sites are needed to identify effects of mining on hydrologic processes, aid development of reclamation methods to reduce hydrologic impacts, and direct environmental mitigation and public policy. 相似文献
7.
河流水质模型中确定水文参数的经验方法探讨 总被引:1,自引:0,他引:1
河流水质模型中,要涉及一些重要的水文参数。本文探索了用经验方法推求水文参数的问题。文中论证了公式的合理性,提出了能表达河流断面形状特性的指标(β),建议了根据不同情况确定公式中参数的原则,还分析了公式的适用条件。研究成果对提高水质模型的适用性和精度都具有重要意义。 相似文献
8.
Since intensive farming practices are essential to produce enough food for the increasing population, farmers have been using
more inorganic fertilizers, pesticides, and herbicides. Agricultural lands are currently one of the major sources of non-point
source pollution. However, by changing farming practices in terms of tillage and crop rotation, the levels of contamination
can be reduced and the quality of soil and water resources can be improved. Thus, there is a need to investigate the amalgamated
hydrologic effects when various tillage and crop rotation practices are operated in tandem. In this study, the Soil Water
Assessment Tool (SWAT) was utilized to evaluate the individual and combined impacts of various farming practices on flow,
sediment, ammonia, and total phosphorus loads in the Little Miami River basin. The model was calibrated and validated using
the 1990–1994 and 1980–1984 data sets, respectively. The simulated results revealed that the SWAT model provided a good simulation
performance. For those tested farming scenarios, no-tillage (NT) offered more environmental benefits than moldboard plowing
(MP). Flow, sediment, ammonia, and total phosphorus under NT were lower than those under MP. In terms of crop rotation, continuous
soybean and corn–soybean rotation were able to reduce sediment, ammonia, and total phosphorus loads. When the combined effects
of tillage and crop rotation were examined, it was found that NT with continuous soybean or corn–soybean rotation could greatly
restrain the loss of sediments and nutrients to receiving waters. Since corn–soybean rotation provides higher economic revenue,
a combination of NT and corn–soybean rotation can be a viable system for successful farming. 相似文献
9.
Characterizing the Extent of Spatially Integrated Floodplain and Wetland Systems in the White River,Indiana, USA 下载免费PDF全文
C. R. Lane A. Hall E. D'Amico N. Sangwan V. Merwade 《Journal of the American Water Resources Association》2017,53(4):774-790
Floodplain delineation may inform protection of wetland systems under local, state, or federal laws. Nationally available Federal Emergency Management Agency Flood Insurance Rate Maps (FIRMs, “100‐year floodplain” maps) focus on urban areas and higher‐order river systems, limiting utility at large scales. Few other national‐scale floodplain data are available. We acquired FIRMs for a large watershed and compared FIRMs to floodplain and integrated wetland area mapping methods based on (1) geospatial distance, (2) geomorphic setting, and (3) soil characteristics. We used observed flooding events (OFEs) with recurrence intervals of 25‐50 to >100 years to assess floodplain estimate accuracy. FIRMs accurately reflected floodplain areas based on OFEs and covered 32% of river length, whereas soil‐based mapping was not as accurate as FIRMs but characterized floodplain areas over approximately 65% of stream length. Geomorphic approaches included more areas than indicated by OFE, whereas geospatial approaches tended to cover less area. Overall, soil‐based methods have the highest utility in determining floodplains and their integrated wetland areas at large scales due to the use of nationally available data and flexibility for regional application. These findings will improve floodplain and integrated wetland system extent assessment for better management at local, state, and national scales. 相似文献
10.
Connectivity of Streams and Wetlands to Downstream Waters: An Integrated Systems Framework 总被引:1,自引:0,他引:1 下载免费PDF全文
Scott G. Leibowitz Parker J. Wigington Jr. Kate A. Schofield Laurie C. Alexander Melanie K. Vanderhoof Heather E. Golden 《Journal of the American Water Resources Association》2018,54(2):298-322
Interest in connectivity has increased in the aquatic sciences, partly because of its relevance to the Clean Water Act. This paper has two objectives: (1) provide a framework to understand hydrological, chemical, and biological connectivity, focusing on how headwater streams and wetlands connect to and contribute to rivers; and (2) briefly review methods to quantify hydrological and chemical connectivity. Streams and wetlands affect river structure and function by altering material and biological fluxes to the river; this depends on two factors: (1) functions within streams and wetlands that affect material fluxes; and (2) connectivity (or isolation) from streams and wetlands to rivers that allows (or prevents) material transport between systems. Connectivity can be described in terms of frequency, magnitude, duration, timing, and rate of change. It results from physical characteristics of a system, e.g., climate, soils, geology, topography, and the spatial distribution of aquatic components. Biological connectivity is also affected by traits and behavior of the biota. Connectivity can be altered by human impacts, often in complex ways. Because of variability in these factors, connectivity is not constant but varies over time and space. Connectivity can be quantified with field‐based methods, modeling, and remote sensing. Further studies using these methods are needed to classify and quantify connectivity of aquatic ecosystems and to understand how impacts affect connectivity. 相似文献
11.
Revealing the Diversity of Natural Hydrologic Regimes in California with Relevance for Environmental Flows Applications 下载免费PDF全文
Belize A. Lane Helen E. Dahlke Gregory B. Pasternack Samuel Sandoval‐Solis 《Journal of the American Water Resources Association》2017,53(2):411-430
Alterations to flow regimes for water management objectives have degraded river ecosystems worldwide. These alterations are particularly profound in Mediterranean climate regions such as California with strong climatic variability and riverine species highly adapted to the resulting flooding and drought disturbances. However, defining environmental flow targets for Mediterranean rivers is complicated by extreme hydrologic variability and often intensive water management legacies. Improved understanding of the diversity of natural streamflow patterns and their spatial arrangement across Mediterranean regions is needed to support the future development of effective flow targets at appropriate scales for management applications with minimal resource and data requirements. Our study addresses this need through the development of a spatially explicit reach‐scale hydrologic classification for California. Dominant hydrologic regimes and their physio‐climatic controls are revealed, using available unimpaired and naturalized streamflow time‐series and generally publicly available geospatial datasets. This methodology identifies eight natural flow classes representing distinct flow sources, hydrologic characteristics, and catchment controls over rainfall‐runoff response. The study provides a broad‐scale hydrologic framework upon which flow‐ecology relationships could subsequently be established towards reach‐scale environmental flows applications in a complex, highly altered Mediterranean region. 相似文献
12.
Featured Collection Introduction: Connectivity of Streams and Wetlands to Downstream Waters 下载免费PDF全文
Laurie C. Alexander Ken M. Fritz Kate A. Schofield Bradley C. Autrey Julie E. DeMeester Heather E. Golden David C. Goodrich William G. Kepner Hadas R. Kiperwas Charles R. Lane Stephen D. LeDuc Scott G. Leibowitz Michael G. McManus Amina I. Pollard Caroline E. Ridley Melanie K. Vanderhoof Parker J. Wigington Jr. 《Journal of the American Water Resources Association》2018,54(2):287-297
Connectivity is a fundamental but highly dynamic property of watersheds. Variability in the types and degrees of aquatic ecosystem connectivity presents challenges for researchers and managers seeking to accurately quantify its effects on critical hydrologic, biogeochemical, and biological processes. However, protecting natural gradients of connectivity is key to protecting the range of ecosystem services that aquatic ecosystems provide. In this featured collection, we review the available evidence on connections and functions by which streams and wetlands affect the integrity of downstream waters such as large rivers, lakes, reservoirs, and estuaries. The reviews in this collection focus on the types of waters whose protections under the U.S. Clean Water Act have been called into question by U.S. Supreme Court cases. We synthesize 40+ years of research on longitudinal, lateral, and vertical fluxes of energy, material, and biota between aquatic ecosystems included within the Act's frame of reference. Many questions about the roles of streams and wetlands in sustaining downstream water integrity can be answered from currently available literature, and emerging research is rapidly closing data gaps with exciting new insights into aquatic connectivity and function at local, watershed, and regional scales. Synthesis of foundational and emerging research is needed to support science‐based efforts to provide safe, reliable sources of fresh water for present and future generations. 相似文献
13.
14.
Mapping Outlets of Iowa Flood Center and National Water Center River Networks for Hydrologic Model Comparison 下载免费PDF全文
Felipe Quintero Witold F. Krajewski 《Journal of the American Water Resources Association》2018,54(1):28-39
River networks based on Digital Elevation Model (DEM) data differ depending on the DEM resolution, accuracy, and algorithms used for network extraction. As spatial scale increases, the differences diminish. This study explores methods that identify the scale where networks obtained by different methods agree within some margin of error. The problem is relevant for comparing hydrologic models built around the two networks. An example is the need to compare streamflow prediction from the Hillslope Link Model (HLM) operated by the Iowa Flood Center (IFC) and the National Water Model (NWM) operated by the National Water Center of the National Oceanic and Atmospheric Administration. The HLM uses landscape decomposition into hillslopes and channel links while the NWM uses the NHDPlus dataset as its basic spatial support. While the HLM resolves the scale of the NHDPlus, the outlets of the latter do not necessarily correspond to the nodes of the HLM model. The authors evaluated two methods to map the outlets of NHDPlus to outlets on the IFC network. The methods compare the upstream areas of the channels and their spatial location. Both methods displayed similar performance and identified matches for about 80% of the outlets with a tolerance of 10% in errors in the upstream area. As the aggregation scale increases, the number of matches also increases. At the scale of 100 km2, 90% of the outlets have matches with tolerance of 5%. The authors recommend this scale for comparing the HLM and NWM streamflow predictions. 相似文献
15.
Gregory C. Johnson Jennifer L. Krstolic Brett J.K. Ostby 《Journal of the American Water Resources Association》2014,50(4):878-897
Segments of the Clinch River in Virginia have experienced declining freshwater mussel populations during the past 40 years, while other segments of the river continue to support some of the richest mussel communities in the country. The close proximity of these contrasting reaches provides a study area where differences in climate, hydrology, and historic mussel distribution are minimal. The USGS conducted a study between 2009 and 2011 to evaluate possible causes of the mussel declines. Evaluation of mussel habitat showed no differences in physical habitat quality, leaving water and sediment quality as possible causes for declines. Three years of continuous water‐quality data showed higher turbidity and specific conductance in the reaches with low‐quality mussel assemblages compared to reaches with high‐quality mussel assemblages. Discrete water‐quality samples showed higher major ions and metals concentrations in the low‐quality reach. Base‐flow samples contained high major ion and metal concentrations coincident to low‐quality mussel populations. These results support a conceptual model of dilution and augmentation where increased concentrations of major ions and other dissolved constituents from mined tributaries result in reaches with declining mussel populations. Tributaries from unmined basins provide water with low concentrations of dissolved constituents, diluting reaches of the Clinch River where high‐quality mussel populations occur. 相似文献
16.
17.
18.
19.
通过多种内河水质净化方法的对比,分析了絮凝沉淀法净化内河水质的优势,阐述了絮凝剂投加和絮凝沉淀设备选用的要点,并以福州市安泰河水质净化工程为例,介绍了絮凝沉淀法净化内河水质的应用效果。 相似文献