首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generalizable methods that identify suitable aquatic habitat across large river basins and regions are needed to inform resource management. Habitat suitability models intersect environmental variables to predict species occurrence, but are often data intensive and thus are typically developed at small spatial scales. This study estimated mean monthly aquatic habitat suitability throughout Utah (USA) for Bonneville Cutthroat Trout (Oncorhynchus clarkii utah) and Bluehead Sucker (Catostomus discobolus) with publicly available, geospatial datasets. We evaluated 15 habitat suitability models using unique combinations of percent of mean annual discharge, velocity, gradient, and stream temperature. Environmental variables were validated with observed conditions and species presence observations to verify habitat suitability estimates. Stream temperature, gradient, and discharge best predicted Bonneville Cutthroat Trout presence, and gradient and discharge best predicted Bluehead Sucker presence. Simple aquatic habitat suitability models outperformed models that used only streamflow to estimate habitat for both species, and are useful for conservation planning and water resources decision-making. This modeling approach could enable resource managers to prioritize stream restoration across vast regions within their management domain, and is potentially compatible with water management modeling to improve ecological objectives in management models.  相似文献   

2.
ABSTRACT: Sound water resource management requires comparison of benefits and costs. Many of the perceived benefits of water relate to providing instream flow for recreation and endangered fish. These uses have value but no prices to guide resource allocation. Techniques to estimate the dollar values of environmental benefits are presented and illustrated with several case studies. The results of the case studies show that emphasis on minimum instream flow allocates far less than the economically optimum amount of water to instream uses. Studies in Idaho demonstrated that optimum flows that balance benefits and costs can be ten times greater than minimum flows. The economic benefits of preserving public trust resources outweighed the replacement cost of water and power by a factor of fifty in California. While it is important to incorporate public preferences in water resource management, these economic survey techniques provide water managers with information not just on preference but how much the public is willing to pay for as well. This facilitates comparison of the public costs and benefits of instream flows.  相似文献   

3.
The Hetch Hetchy System provides San Francisco with most of its water supply. O'Shaughnessy Dam is one component of this system, providing approximately 25 percent of water storage for the Hetch Hetchy System and none of its conveyance. Removing O'Shaughnessy Dam has gained interest for restoring Hetch Hetchy Valley. The water supply feasibility of removing O'Shaughnessy Dam is analyzed by examining alternative water storage and delivery operations for San Francisco using an economic engineering optimization model. This model ignores institutional and political constraints and has perfect hydrologic foresight to explore water supply possibilities through reoperation of other existing reservoirs. The economic benefits of O'Shaughnessy Dam and its alternatives are measured in terms of the quantity of water supplied to San Francisco and agricultural water users, water treatment costs, and hydropower generation. Results suggest there could be little water scarcity if O'Shaughnessy Dam were to be removed, although removal would be costly due to additional water treatment costs and lost hydropower generation.  相似文献   

4.
Abstract: The Rio Grande basin shares problems faced by many arid regions of the world: growing and competing demands for water and river flows and uses that are vulnerable to drought and climate change. In recent years legislation, administrative action, and other measures have emerged to encourage private investment in efficient agricultural water use. Nevertheless, several institutional barriers discourage irrigators from investing in water conservation measures. This article examines barriers to agricultural water conservation in the Rio Grande basin and identifies challenges and opportunities for promoting it. Several barriers to water conservation are identified: clouded titles, water transfer restrictions, illusory water savings, insecure rights to conserved water, shared carry‐over storage, interstate compacts, conservation attitudes, land tenure arrangements, and an uncertain duty of water. Based on data on water use and crop production costs, price is found to be a major factor influencing water conservation. A low water price discourages water conservation even if other institutions promote it. A high price of water encourages conservation even in the presence of other discouraging factors. In conclusion, water‐conserving policies can be more effectively implemented where water institutions and programs are designed to be compatible with water’s underlying economic scarcity.  相似文献   

5.
Restoration of unobstructed, free-flowing sections of river can provide considerable environmental and ecological benefits. It removes impediments to aquatic species dispersal and improves flow, sediment and nutrient transport. This, in turn, can serve to improve environmental quality and abundance of native species, not only within the river channel itself, but also within adjacent riparian, floodplain and coastal areas. In support of this effort, a generic optimization model is presented in this paper for prioritizing the removal of problematic structures, which adversely affect aquatic species dispersal and river hydrology. Its purpose is to maximize, subject to a budget, the size of the single largest section of connected river unimpeded by artificial flow and dispersal barriers. The model is designed to improve, in a holistic way, the connectivity and environmental status of a river network. Furthermore, unlike most previous prioritization methods, it is particularly well suited to meet the needs of potamodromous fish species and other resident aquatic organisms, which regularly disperse among different parts of a river network. After presenting an initial mixed integer linear programming formulation of the model, more scalable reformulation and solution techniques are investigated for solving large, realistic-sized instances. Results from a case-study of the Pike River Watershed, located in northeast Wisconsin, USA, demonstrate the computational efficiency of the proposed model as well as highlight some general insights about systematic barrier removal planning.  相似文献   

6.
7.
ABSTRACT: A basic problem in the management of rivers has been how to balance the tradeoffs between instream and out-of-stream uses. Traditionally, the problem has been addressed by optimizing the economic benefits of flow diversions and regulated releases with instream uses as a flow constraint. An alternative method is to model the effect different river flows have on various recreational uses (e.g., boating, fishing) and then use the results as an additional function or piece of information to determine river project operations and benefits. A methodology that is based on multiobjective decision theory and that relates instream recreational preferences to river flow is proposed. The methodology consists of determining, standardizing, and combining recreational benefit functions, and incorporating potential sources of uncertainty into an estimate of total instream benefits. Thus different types of flow patterns, resulting from reservoir regulation (out-of-stream water uses), can be analyzed to determine their potential instream impact. The methodology is applied to the New River Gorge, West Virginia, which has been designated as a National River.  相似文献   

8.
ABSTRACT: We review published analyses of the effects of climate change on goods and services provided by freshwater ecosystems in the United States. Climate-induced changes must be assessed in the context of massive anthropogenic changes in water quantity and quality resulting from altered patterns of land use, water withdrawal, and species invasions; these may dwarf or exacerbate climate-induced changes. Water to meet instream needs is competing with other uses of water, and that competition is likely to be increased by climate change. We review recent predictions of the impacts of climate change on aquatic ecosystems in eight regions of North America. Impacts include warmer temperatures that alter lake mixing regimes and availability of fish habitat; changed magnitude and seasonality of runoff regimes that alter nutrient loading and limit habitat availability at low flow; and loss of prairie pothole wetlands that reduces waterfowl populations. Many of the predicted changes in aquatic ecosystems are a consequence of climatic effects on terrestrial ecosystems; shifts in riparian vegetation and hydrology are particularly critical. We review models that could be used to explore potential effects of climate change on freshwater ecosystems; these include models of instream flow, bioenergetics models, nutrient spiraling models, and models relating riverine food webs to hydrologic regime. We discuss potential ecological risks, benefits, and costs of climate change and identify information needs and model improvements that are required to improve our ability to predict and identify climate change impacts and to evaluate management options.  相似文献   

9.
Water quality and stream habitat in agricultural watersheds are under greater scrutiny as hydrologic pathways are altered to increase crop production. Ditches have been traditionally constructed to remove water from agricultural lands. Little attention has been placed on alternative ditch designs that are more stable and provide greater habitat diversity for wildlife and aquatic species. In 2009, 1.89 km of a conventional drainage ditch in Mower County, Minnesota, was converted to a two‐stage ditch (TSD) with small, adjacent floodplains to mimic a natural system. Cross section surveys, conducted pre‐ and post‐construction, generally indicate a stable channel with minor adjustments over time. Vegetation surveys showed differences in species composition and biomass between the slopes and the benches, with changes ongoing. Longitudinal surveys demonstrated a 12‐fold increase in depth variability. Fish habitat quality improved with well‐sorted gravel riffles and deeper pool habitat. The biological response to improved habitat quality was investigated using a Fish Index of Biological Integrity (FIBI). Our results show higher FIBI scores post‐construction with scores more similar to natural streams. In summary, the TSD demonstrated improvements in riparian and instream habitat quality and fish communities, which showed greater fish species richness, higher percentages of gravel spawning fish, and better FIBI scores. This type of management tool could benefit ditches in other regions where gradient and geology allow.  相似文献   

10.
ABSTRACT: Riparian zones perform a variety of biophysical functions that can be managed to reduce the effects of land use on instream habitat and water quality. However, the functions and human uses of riparian zones vary with biophysical factors such as landform, vegetation, and position along the stream continuum. These variations mean that “one size fits all” approaches to riparian management can be ineffective for reducing land use impacts. Thus riparian management planning at the watershed scale requires a framework that can consider spatial differences in riparian functions and human uses We describe a pilot riparian zone classification developed to provide such a framework for riparian management in two diverse river systems in the Waikato region of New Zealand. Ten classes of riparian zones were identified that differed sufficiently in their biophysical features to require different management. Generic “first steps” and “best practical” riparian management recommendations and associated costs were developed for each riparian class. The classification aims to not only improve our understanding of the effectiveness of riparian zone management as a watershed management tool among water managers and land owners, but to also provide a basis for deciding on management actions.  相似文献   

11.
Leidner, Andrew J., M. Edward Rister, Ronald D. Lacewell, and Allen W. Sturdivant, 2011. The Water Market for the Middle and Lower Portions of the Texas Rio Grande Basin. Journal of the American Water Resources Association (JAWRA) 47(3):597‐610. DOI: 10.1111/j.1752‐1688.2011.00527.x Abstract: Regional water management on the United States’ side of the middle and lower portions of the Rio Grande basin of Texas has been aided by a functioning water market since the early 1970s. The water market operates over a region that stretches from the Amistad Reservoir to the Rio Grande’s terminus into the Gulf of Mexico. This article provides an overview of the organizations, institutions, policies, and geographic particulars of the region’s water‐management system and its water market. In recent years, this region has experienced high population growth, periodic droughts, and a reallocation of water resources from the area’s agricultural sector to the municipal sector. Demand growth for potable water and a relatively fixed supply of raw water are reflected in increasing prices for domestic, municipal, and industrial water rights. Rising prices in the presence of scarcity and the transfer of water from lower‐value to higher‐value uses indicate that the market is operating as suggested by economic theory. Reasons for the market’s functionality are presented and discussed. Finally, suggestions are presented which might mitigate potential complications to market operations from aquifer depletion and aid the management of instream river flows.  相似文献   

12.
In recent decades, public and private environmental entities have been purchasing or leasing water rights across the Western United States (U.S.) in efforts to restore river flows and aquatic ecosystems. The need to pay for flow restoration arises from the fact that state governments did not begin to reserve water for instream purposes until the 1970s, long after water rights had become over‐appropriated and flows were substantially depleted in most rivers. As a consequence, flow depletion has become the leading cause of fish endangerment in the U.S., including the imperilment of two‐thirds of all native fish species in the Colorado River system. This paper takes stock of the progress made in buying water for the environment, specifically by reviewing and analyzing more than 50 transactions executed by public and private entities and the sources of funding underpinning these transactions. We conclude that nongovernmental actors — such as environmental organizations and state water trusts — are integral to regional efforts to restore river flows; these nongovernmental actors executed more than two‐thirds of the transactions we documented. However, we also conclude that the long‐term success of these nongovernmental actors depends upon the availability of sustained public funding that enables them to build capacity and engage in the large number of transactions needed to restore flows across each state.  相似文献   

13.
A sensitivity analysis is performed to evaluate river temperature variations in response to changes in hydraulic and meteorological conditions. The effects of instream flow, river geometry, and weather factors on daily mean and daily maximum river temperatures are quantified by analytical solutions to a simplified model. The influence coefficient method is used to determine river temperature sensitivity. The sensitivity analysis presents quantitative evidence that river temperatures are more sensitive to instream flowrate, upstream inflow temperature, air temperature, humidity and solar radiation than to other parameters including wind speed and channel geometry and morphometry. It is found that the sensitivity of river temperatures to flow is as significant as that to weather. Daily maximum river temperature is more sensitive to flowrate than daily mean temperature. Adapting the concept of 'diminishing returns', a critical instream flowrate is identified, which divides high and low sensitivity of water temperatures to flowrate. The critical flowrate can be used to determine practically achievable and economically feasible flow requirements for summer river temperature control. The sensitivity results can assist in streamflow management and reservoir operation for protections of habitat and aquatic environment.  相似文献   

14.
ABSTRACT: The resource management problem for the Middle Platte ecosystem is the insufficient water available to meet both instream ecological demands and out‐of‐stream economic needs. This problem of multiple interest groups competing for a limited resource is compounded by sharp disagreement in the scientific community over endangered species' needs for instream flows. In this study, game theory was used to address one dimension of this resource management problem. A sequential auction with repeated bidding was used to determine how much instream flow water each of three states — Colorado, Nebraska, and Wyoming — will provide and at what price. The results suggest that the use of auction mechanisms can improve the prospects for reaching a multi‐state agreement on who will supply instream flow water, if the auction is structured to discourage misrepresentation of costs and if political compensation is allowed.  相似文献   

15.
ABSTRACT: Exports from the Sacramento‐San Joaquin Delta are an important source of water for Central Valley and Southern California users. The purpose of this paper is to estimate and analyze the effects increased exports to south of Delta users would have on the Sacramento Valley economy and water management if water were managed and reallocated for purely economic benefits, as if there were an ideal Sacramento Valley water market. Current Delta exports of 6,190 thousand acre‐feet per year were increased incrementally to maximum export pumping plant capacities. Initial increases in Delta exports did not increase regional water scarcity, but decreased surplus Delta flows. Further export increases raised agricultural scarcity. Urban users suffer increased scarcity only for exports exceeding 10,393 taf/yr. Expanding exports raises the economic value of expanding key facilities (such as Engle bright Lake and South Folsom Canal) and the opportunity costs of environmental requirements. The study illustrates the physical and economic capacity of the Sacramento Valley to further increase exports of water to drier parts of the state, even within significant environmental flow restrictions. More generally, the results illustrate the physical capacity for greater economic benefits and flexibility in water management within environmental constraints, given institutional capability to reoperate or reallocate water resources, as implied by water markets.  相似文献   

16.
Concerns over water scarcity, climate change, and environmental health risks have prompted some Asian cities to invest in river rehabilitation, but deciding on the end goals of rehabilitation is a complex undertaking. We propose a multidisciplinary framework linking riparian landscape change to human well‐being, providing information relevant to decision makers, in a format that facilitates stakeholder involvement. We illustrate this through a case study of the densely settled, environmentally degraded, and flood prone Ciliwung River flowing through metropolitan Jakarta, Indonesia. Our methodology attempts to respond to this complexity through an iterative approach, strongly based on conceptualization and mathematical modeling. Nested hydrologic, hydrodynamic, and water quality models provide outputs at catchment‐, corridor‐, and localized site‐scales. Advanced 3‐D landscape modeling is used for procedural design and precise visualization of proposed changes and their impacts, as predicted by the mathematical models. Finally, participatory planning and design methods allow us to obtain critical stakeholder feedback in shaping a socially acceptable approach. Our framework aims at demonstrating that a change in paradigm in river rehabilitation is possible, and providing future scenarios that balance concerns over flooding, water quality, and ecology, with the realities of a rapidly growing megacity.  相似文献   

17.
城市河流近自然治理--概念构架与治理设计   总被引:6,自引:0,他引:6  
河流是城市生态系统的重要组成部分,是城市的自然元素和景观组分,具有提供水生生物生境和水源、调节小气候、美化城市、休闲娱乐等多种生态服务功能.随着城市化进程的飞速发展,城市河流生态系统面临着生物多样性减少、污染加剧等多方面的危害.如何恢复受损的城市河流生态系统已经成为我们的当务之急.对城市河流的生态结构及其在城市中的生态功能进行了简要介绍,讨论了河流生态恢复的近自然方法,并对现有的河流生态恢复存在的问题及发展趋势提出了几点看法.  相似文献   

18.
Texas water resources, already taxed by drought and population growth, could be further stressed by possible listings of endangered aquatic species. This study estimated potential economic impacts of environmental flows (EFs) for five freshwater unionid mussels in three Central Texas basins (Brazos, Colorado, and Guadalupe‐San Antonio Rivers) that encompass 36% of Texas (~246,000 km2). A water availability model projected reductions in water supply to power, commercial and industrial, municipal, and agriculture sectors in response to possible EFs for mussels. Single‐year economic impacts were calculated using publicly available data with and without water transfers. Benefits of EFs should also be assessed, should critical habitat be proposed. Potential economic losses were highest during droughts, but were nominal (<$1 M) in wetter years — even with high EFs. Reduced supplies to San Antonio area power plants caused worst‐case impacts of a single‐year shutdown up to $107 million (M) during drought with high EFs. For other sectors in the study area, water transfers reduced worst‐case losses from $80 to $11 M per year. Implementing innovative water management strategies such as water markets, conjunctive use of surface water and groundwater, aquifer storage and recovery could mitigate economic impacts if mussels — or other widely distributed aquatic species — were listed. However, approaches for defining EFs and strategies for mitigating economic impacts of EFs are needed.  相似文献   

19.
ABSTRACT: Changes in global climate may alter hydrologic conditions and have a variety of effects on human settlements and ecological systems. The effects include changes in water supply and quality for domestic, irrigation, recreational, commercial, and industrial uses; in instream flows that support aquatic ecosystems, recreation uses, hydropower, navigation, and wastewater assimilation; in wetland extent and productivity that support fish, wildlife, and wastewater assimilation; and in the frequency and severity of floods. Watersheds where water resources are stressed under current climate are most likely to be vulnerable to changes in mean climate and extreme events. This study identified key aspects of water supply and use that could be adversely affected by climate change, developed measures and criteria useful for assessing the vulnerability of regional water resources and water dependent resources to climate change, developed a regional database of water sensitive variables consistent with the vulnerability measures, and applied the criteria in a regional study of the vulnerability of U.S. water resources. Key findings highlight the vulnerability of consumptive uses in the western and, in particular, the southwestern United States. However, southern United States watersheds are relatively more vulnerable to changes in water quality, flooding, and other instream uses.  相似文献   

20.
In the past few decades, the demand for construction grade sand is increasing in many parts of the world due to rapid economic development and subsequent growth of building activities. This, in many of the occasions, has resulted in indiscriminate mining of sand from instream and floodplain areas leading to severe damages to the river basin environment. The case is rather alarming in the small catchment rivers like those draining the southwestern coast of India due to limited sand resources in their alluvial reaches. Moreover, lack of adequate information on the environmental impact of river sand mining is a major lacuna challenging regulatory efforts in many developing countries. Therefore, a scientific assessment is a pre-requisite in formulating management strategies in the sand mining-hit areas. In this context, a study has been made as a case to address the environmental impact of sand mining from the instream and floodplain areas of three important rivers in the southwestern coast of India namely the Chalakudy, Periyar and Muvattupuzha rivers, whose lowlands host one of the fast developing urban-cum-industrial centre, the Kochi city. The study reveals that an amount of 11.527 million ty−1 of sand (8.764 million ty−1 of instream sand and 2.763 million ty−1 of floodplain sand) is being mined from the midland and lowland reaches of these rivers for construction of buildings and other infrastructural facilities in Kochi city and its satellite townships. Environmental Impact Assessment (EIA) carried out as a part of this investigation shows that the activities associated with mining and processing of sands have not only affected the health of the river ecosystems but also degraded its overbank areas to a large extent. Considering the degree of degradation caused by sand mining from these rivers, no mining scenario may be opted in the deeper zones of the river channels. Also, a set of suggestions are made for the overall improvement of the rivers and its biophysical environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号