首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
/ Emerging ecosystem science builds on adaptive management as an approach to dealing with salmon problems in the Pacific Northwest. Adaptive management brings scientific and democratic processes together. However, managers, the public, resource users, and scientists differ in their views on the causes of salmon decline. Managers emphasize habitat loss and over-harvest as the primary causes; commercial fishers point to habitat loss, management practices, and predators; and the public gives greatest weight to water pollution and ocean drift nets. Scientific studies of salmon often produce results that seem contradictory or unclear to the public. For adaptive management to be effective, scientists' and the public need to better understand one another's perspectives.KEY WORDS: Perception; Fishery management; Salmon; Pacific Northwest; Science  相似文献   

2.
Diadromous aquatic species that cross a diverse range of habitats (including marine, estuarine, and freshwater) face different effects of climate change in each environment. One such group of species is the anadromous Pacific salmon (Oncorhynchus spp.). Studies of the potential effects of climate change on salmonids have focused on both marine and freshwater environments. Access to a variety of estuarine habitat has been shown to enhance juvenile life-history diversity, thereby contributing to the resilience of many salmonid species. Our study is focused on the effect of sea-level rise on the availability, complexity, and distribution of estuarine, and low-freshwater habitat for Chinook salmon (Oncorhynchus tshawytscha), steelhead (anadromous O. mykiss), and coho salmon (O. kisutch) along the Oregon Coast under future climate change scenarios. Using LiDAR, we modeled the geomorphologies of five Oregon estuaries and estimated a contour associated with the current mean high tide. Contour intervals at 1- and 2-m increments above the current mean high tide were generated, and changes in the estuary morphology were assessed. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting the changes in estuary shape. For each salmonid species, changes in the amount and complexity of estuarine edge habitats varied by estuary. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance salmonid habitat under future climatic conditions.  相似文献   

3.
We reviewed the scientific literature on non‐floodplain wetlands (NFWs), freshwater wetlands typically located distal to riparian and floodplain systems, to determine hydrological, physical, and chemical functioning and stream and river network connectivity. We assayed the literature for source, sink, lag, and transformation functions, as well as factors affecting connectivity. We determined NFWs are important landscape components, hydrologically, physically, and chemically affecting downstream aquatic systems. NFWs are hydrologic and chemical sources for other waters, hydrologically connecting across long distances and contributing compounds such as methylated mercury and dissolved organic matter. NFWs reduced flood peaks and maintained baseflows in stream and river networks through hydrologic lag and sink functions, and sequestered or assimilated substantial nutrient inputs through chemical sink and transformative functions. Landscape‐scale connectivity of NFWs affects water and material fluxes to downstream river networks, substantially modifying the characteristics and function of downstream waters. Many factors determine the effects of NFW hydrological, physical, and chemical functions on downstream systems, and additional research quantifying these factors and impacts is warranted. We conclude NFWs are hydrologically, chemically, and physically interconnected with stream and river networks though this connectivity varies in frequency, duration, magnitude, and timing.  相似文献   

4.
Fraser River sockeye salmon have been the basis for a major commercial fishery shared by Canada and the United States, and an important cultural foundation for many aboriginal groups; they are also of huge ecological significance throughout the Fraser Basin. The potential for altered aquatic habitat and temperature regimes due to climate change is an important concern for Fraser River sockeye salmon. This paper characterizes the vulnerability of Fraser River sockeye salmon to future climate change using an approach that is novel on three counts. First, previous efforts to assess the vulnerability of salmon to climate change have largely focused on only part of the life cycle, whereas we consider climate vulnerability at all stages in the life cycle. Second, we use the available scientific literature to provide a basis for structuring and eliciting judgments from fisheries science and management experts who research and manage these systems. Third, we consider prospects for mitigating the effects of climate change on sockeye salmon. Tests showed that participants’ judgments differentiated in statistically significant ways among questions that varied in terms of life stages, spawning regions and climate scenarios. The consensus among participants was that Fraser River sockeye are most vulnerable to climate change during the egg and returning adult stages of the life cycle. A high temperature scenario was seen as imposing the greatest risk on sockeye stocks, particularly those that migrate to the upper reaches of the Fraser River system and spawn earlier in the summer. The inability to alter water temperature and the highly constrained nature of sockeye management, with competing gear types and sequential fisheries over a long distance, suggest the potential to mitigate adverse effects is limited. Fraser River sockeye already demonstrate a great deal of adaptive capacity in utilizing heterogeneous habitats in different river sub-basins. This adaptability points to the potential value of policies to make stocks more resilient to uncertain futures.  相似文献   

5.
6.
This article does not focus on adaptation or mitigation policy directly but on an allied opportunity that exists for the Pacific Islands via the auspices of the Climate Convention, because the existing very costly energy systems used in the Pacific Island region are fossil-fuel dependent. It is argued here that efforts can be made towards the development of energy systems that are ecologically sustainable because Pacific Island nations are eligible to receive assistance to introduce renewable energy technology and pursue energy conservation via implementation mechanisms of the Climate Convention and, in particular, through transfer of technology and via joint implementation. It is contended that assistance in the form of finance, technology, and human resource development from developed countries and international organizations would provide sustainable benefits in improving the local Pacific Island environments. It is also emphasized that mitigation of greenhouse gas emissions is not the responsibility of the Pacific Islands as they contribute very little on a per capita global scale and a tiny proportion of total global greenhouse gas emissions.  相似文献   

7.
A meta‐analysis of three national databases determined the potential linkage between soil and surface and groundwater enrichment with phosphorus (P). Soil P was enriched especially under dairying commensurate with an increase in cow numbers and the tonnage of P‐fertilizers sold. Median P concentrations were enriched in surface waters receiving runoff from industrial and dairy land uses, and in groundwater beneath dairying especially in those aquifers with gravel or sand lithology, irrespective of groundwater redox status. After geographically pairing surface and groundwater sites to maximize the chance of connectivity, a subset of sites dominated by aquifers with gravel and sand lithology showed increasing P concentrations with as little as 10 years data. These data raise the possibility that groundwater could contribute much P to surface water if: there is good connectivity between surface and groundwater, intensive land use occurs on soils prone to leaching, and leached‐P is not attenuated through aquifers. While strategies are available to mitigate P loss from intensive farming systems in the short‐term, factors such as enriched soils and slow groundwater may mean that despite their use, there will be a long‐term input (viz. legacy), that may sustain surface water P enrichment. To avoid poor surface water quality, management and planning may need to consider the connectivity and characteristics of P in soil‐groundwater‐surface water systems.  相似文献   

8.
The article describes a riverscape approach based on landscape ecology concepts, which aims at studying the multiscale relationships between the spatial pattern of stream fish habitat patches and processes depending on fish movements. A review of the literature shows that few operational methods are available to study this relationship due to multiple methodological and practical challenges inherent to underwater environments. We illustrated the approach with literature data on a cyprinid species (Barbus barbus) and an actual riverscape of the Seine River, France. We represented the underwater environment of fishes for different discharges using two-dimensional geographic information system-based maps of the resource habitat patches, defined according to activities (feeding, resting, and spawning). To quantify spatial patterns at nested levels (resource habitat patch, daily activities area, subpopulation area), we calculated their composition, configuration, complementation, and connectivity with multiple spatial analysis methods: patch metrics, moving-window analysis, and least cost modeling. The proximity index allowed us to evaluate habitat patches of relatively great value, depending on their spatial context, which contributes to the setting of preservation policies. The methods presented to delimit potential daily activities areas and subpopulation areas showed the potential gaps in the biological connectivity of the reach. These methods provided some space for action in restoration schemes.  相似文献   

9.
Hatcheries have long been used in an attempt to mitigate for declines in wild stocks of Pacific salmon (Oncorhynchus spp.), though the conservation benefit of hatcheries is a topic of ongoing debate. Irrespective of conservation benefits, a fundamental question is whether hatcheries will be able to function as they have in the past given anticipated future climate conditions. To begin to answer this question, we developed a deterministic modeling framework to evaluate how climate change may affect hatcheries that rear Pacific salmon. The framework considers the physiological tolerances for each species, incorporates a temperature-driven growth model, and uses two metrics commonly monitored by hatchery managers to determine the impacts of changes in water temperature and availability on hatchery rearing conditions. As a case study, we applied the model to the US Fish and Wildlife Service’s Winthrop National Fish Hatchery. We projected that hatchery environmental conditions remained within the general physiological tolerances for Chinook salmon in the 2040s (assuming A1B greenhouse gas emissions scenario), but that warmer water temperatures in summer accelerated juvenile salmon growth. Increased growth during summer coincided with periods when water availability should also be lower, thus increasing the likelihood of physiological stress in juvenile salmon. The identification of these climate sensitivities led to a consideration of potential mitigation strategies such as chilling water, altering rations, or modifying rearing cycles. The framework can be refined with new information, but in its present form, it provides a consistent, repeatable method to assess the vulnerability of hatcheries to predicted climate change.  相似文献   

10.
ABSTRACT: The Umatilla River Basin Fisheries Restoration Plan was initiated in the early 1980s to mitigate salmonid losses caused by hydroelectric development and habitat degradation. The objectives are to enhance the abundance of endemic steelhead and reintroduce extirpated chinook and coho salmon. The project prompted collaborative effort among federal, state, and tribal agencies, and local water users. It has incorporated habitat restoration, flow enhancement, fish passage improvements, and population supplementation through artificial production. Water exchanges have successfully increased minimum flows during spring and fall migration. While flows remain depressed compared to historic conditions, there is potential for improved habitat, passage, and homing. The mean adult‐to‐adult return rate of hatchery‐reared steelhead exceeded replacement and that of the naturally‐spawning population. Although the smolt‐to‐adult survival rates of hatchery‐reared fish fluctuate, salmonid escapement has increased in recent years, permitting steelhead and spring chinook harvest. Enumeration of potential spawners and observed redds reveals an increase in natural production of all supplemented species. Comparison of hatchery‐reared and naturally‐spawning steelhead populations revealed differences in life history characteristics (in age composition and sex ratios) though run timing and genetic stock compositions of the two components of the populations have not differed. Sustained monitoring is needed to determine benefits of integrating habitat restoration and artificial production in restoring salmonid populations.  相似文献   

11.
In Europe, coastal dune systems with Juniperus spp. (Natura 2000 habitat code 2250) are a priority habitat for conservation according to the Natura 2000 policies. Currently, anthropogenic pressure is threatening the biodiversity of this habitat. While the impact of human pressure on animals and vascular plants is already documented, information is still scanty for other organisms such as epiphytic lichens. The main aim of this study is to test the effect of human disturbance on the occurrence and abundance of the red-listed macrolichen Seirophora villosa. We also tested the effect of human disturbance on the whole community of epiphytic lichens in terms of species richness and composition. The study was performed along the coast of Tuscany by comparing both disturbed and undisturbed Juniperus stands according to a stratified random sampling design. Our results provided evidence that in coastal systems the long-term conservation of the red-listed macrolichen S. villosa and its characteristic community composed by several Mediterranean species of conservation concern depends on the maintenance of undisturbed Juniperus habitats. Results also support the possibility of using S. villosa as an indicator species of habitat conservation importance and habitat integrity since its occurrence is predicted on nestedness in term of species composition, assemblages of species poor disturbed stands being subsets of those of richer undisturbed stands.  相似文献   

12.
Recent concerns over a crisis of identity and legitimacy in community-based natural resource management (CBNRM) have emerged following several decades of documented failure. A substantial literature has developed on the reasons for failure in CBNRM. In this paper, we complement this literature by considering these factors in relation to two successful CBNRM case studies. These cases have distinct differences, one focusing on the conservation of hirola in Kenya on community-held trust land and the other focusing on remnant vegetation conservation from grazing pressure on privately held farm land in Australia. What these cases have in common is that both CBNRM projects were initiated by local communities with strong attachments to their local environments. The projects both represent genuine community initiatives, closely aligned to the original aims of CBNRM. The intrinsically high level of “ownership” held by local residents has proven effective in surviving many challenges which have affected other CBNRM projects: from impacts on local livelihoods to complex governance arrangements involving non-government organizations and research organizations. The cases provide some signs of hope among broader signs of crisis in CBNRM practice.  相似文献   

13.
Biosphere Reserves attempt to align existing biodiversity conservation with sustainable resource use, specifically for improving socio-economic circumstances of resident communities. Typically, the Biosphere Reserve model is applied to an established landscape mosaic of existing land uses; these are often socio-ecological systems where strict environmental protection and community livelihoods are in conflict, and environmental degradation frequently accompanies “use”. This raises challenges for successful implementation of the model, as the reality of the existing land-use mosaic undermines the theoretical aspirations of the Biosphere concept. This study focuses on the Kruger to Canyons Biosphere Reserve (K2C), South Africa; a socio-ecological landscape where formal conservation is juxtaposed against extensive impoverished rural communities. We focus on land-cover changes of the existing land-use mosaic (1993–2006), specifically selected land-cover classes identified as important for biodiversity conservation and local-level resource utilization. We discuss the implications of transformation for conservation, sustainable resource-use, and K2C’s functioning as a “Biosphere Reserve”. Spatially, changes radiated outward from the settlement expanse, with little regard for the theoretical land-use zonation of the Biosphere Reserve. Settlement growth tracked transport routes, transforming cohesive areas of communal-use rangelands. Given the interdependencies between the settlement population and local environmental resources, the Impacted Vegetation class expanded accordingly, fragmenting the Intact Vegetation class, and merging rangelands. This has serious implications for sustainability of communal harvesting areas, and further transformation of intact habitat. The distribution and magnitude of Intact Vegetation losses raise concerns around connectivity and edge effects, with long-term consequences for ecological integrity of remnant habitat, and K2C’s existing network of protected areas.  相似文献   

14.
The present research focused on using spatial analysis to determine relationships among land ownership property sizes and landscape structure, with a focus on conservation management implications. Indices and metrics of ownership property sizes and landscape structure were calculated for 20 km buffer areas around 31 North American Breeding Bird Survey transects, 12 located within the Edwards Plateau ecoregion and 18 in contiguous ecoregions. The number of bird species observed at each transect provided a measure of avian species richness associated with land cover classes for each respective transect (González in Urban influence on diversity of avifauna in the Edwards Plateau of Texas: effect of property sizes on rural landscape structure, Texas A&M University, 2005). Spatial correlations were calculated between each pair of the landscape indices. Spatial analysis identified a “threshold of habitat fragmentation” for the 500 acre (ac) ownership property size. Significant spatial correlations among variables showed that property sizes lower than 500 ac produced habitat fragmentation represented by a decrease in mean patch size (MN) and proximity among habitat patches (Index PROX). Spatial analysis also made possible the prioritization of ecological sub-regions of the Edwards Plateau for conservation or restoration. The Live Oak-Mesquite Savannah showed the highest average ownership property size (7305 ac) and the highest values of patch richness. Based on the results, management in the Live Oak-Mesquite Savannah sub-region should focus on the conservation of land mosaic diversity to assure native avian species turnover (Whittaker 1972). In Balcones Canyon Lands, 64 % of land was covered by farms smaller than 500 ac and the overall average ownership property size was above the threshold of fragmentation (1440 ac), implying that management policies there should focus both on habitat conservation and on restoration. In contrast, 71 % of land in the Lampasas Cut Plains was covered by farms smaller than 500 ac, and average ownership property size was very close to the fragmentation threshold (625 ac). Consequently, the results indicate that management in the Lampasas Cut Plains sub-region should focus on habitat restoration (e.g., corridors that connect isolated habitat patches). In general, the threshold of ownership property size, 500 ac, is important for conservation planning because below that threshold of property size, habitat patch size begins to decrease and the distance between equivalent patches of habitat increases. Isolated patches act as islands within a sea of less suitable habitat which produce negative effects on biodiversity. Identifying the spatial characteristics indicative of habitat fragmentation, or the likelihood thereof, is an important issue for conservation planning in places with urban sprawl influence.  相似文献   

15.
ABSTRACT: While much is known about the hydrology of forested mountain catchments in the Pacific Northwest, important research questions remain. For example, the dynamics of storm precipitation amounts and the modeling of catchment outflows represent a continuing research need. Without an improved understanding of the spatial and temporal aspects of storm precipitation patterns, our ability to evaluate and improve physically-based hydrologic models is limited. From a practical perspective, tens of thousands of kilometers of access roads have been constructed across forested catchments of the Pacific Northwest. Yet, few forestry research programs focus on road drainage (e.g., ditches, culverts, fords). The few studies that address this issue indicate road drainage systems need to function effectively over a wide range of flow events and terrain conditions. In addition, historical forest practices associated with hillslopes and riparian systems have altered the character of many Pacific Northwest aquatic ecosystems. If restoration of these systems is to be effective, research efforts are needed to better understand the linkages between riparian forests, geomorphic processes, and hydrologic disturbance regimes.  相似文献   

16.
Representing hydrologic connectivity of non‐floodplain wetlands (NFWs) to downstream waters in process‐based models is an emerging challenge relevant to many research, regulatory, and management activities. We review four case studies that utilize process‐based models developed to simulate NFW hydrology. Models range from a simple, lumped parameter model to a highly complex, fully distributed model. Across case studies, we highlight appropriate application of each model, emphasizing spatial scale, computational demands, process representation, and model limitations. We end with a synthesis of recommended “best modeling practices” to guide model application. These recommendations include: (1) clearly articulate modeling objectives, and revisit and adjust those objectives regularly; (2) develop a conceptualization of NFW connectivity using qualitative observations, empirical data, and process‐based modeling; (3) select a model to represent NFW connectivity by balancing both modeling objectives and available resources; (4) use innovative techniques and data sources to validate and calibrate NFW connectivity simulations; and (5) clearly articulate the limits of the resulting NFW connectivity representation. Our review and synthesis of these case studies highlights modeling approaches that incorporate NFW connectivity, demonstrates tradeoffs in model selection, and ultimately provides actionable guidance for future model application and development.  相似文献   

17.
The complexity of fluvial systems necessitates interdisciplinary research in fluvial geomorphology and aquatic ecology to develop a fundamental understanding of interconnections among biotic and abiotic aspects of these systems. Integrated knowledge of this type is vital for environmental management of streams in human-dominated environments. A conceptual framework is presented for integrating geomorphological and ecological research on streams in East Central Illinois, USA, a glaciated low-relief agricultural landscape. The framework embodies a multiscale perspective in which a geomorphological conception of the fluvial system is used to define a hierarchy of characteristic spatial scales for exploring important linkages between stream geomorphology and aquatic ecology. The focus ecologically is on fish, because a rich body of historical information exists on fisheries in East Central Illinois and because past work has suggested that availability of physical habitat is a major factor influencing the community characteristics of fish in this human-altered environment. The hierarchy embodied in the framework includes the network, link, planform, bar unit, bar element, and bedform/grain scales. Background knowledge from past research is drawn upon to identify potential linkages between geomorphological and ecological conditions at each of these scales. The conceptual framework is useful for guiding integrated ecogeomorphological research at specific scales and across different scales. It also is helpful for illustrating how widespread human modification of streams has catastrophically altered the scalar structure of fluvial systems in East Central Illinois. Knowledge emerging from the integrated research provides a basis for environmental-management schemes directed toward stream naturalization.  相似文献   

18.
Recovery planning is a key component of many threatened species conservation initiatives and can be a powerful awareness raising tool. One of the largest impediments to conservation efforts in the Pacific region however, is the lack of ecological data and its subsequent effects on the development of feasible and useful recovery plans for threatened species. Without these plans, the understaffed, underfunded and often technically ill-equipped conservation agencies face huge difficulties in planning, prioritizing and conducting conservation activities to adequately protect biodiversity. The Fiji sago palm, Metroxylon vitiense, is an endemic endangered palm species whose survival is heavily dependent on a feasible species recovery plan. It is geographically restricted and threatened by habitat destruction and overexploitation for thatch for the tourism industry and palm heart consumption by local consumers. Despite its threatened status, M. vitiense is not currently protected by national or international legislation. Recent field surveys and extensive stakeholder consultation have resulted in the production of a species recovery plan highlighting the importance of the species and advocating sustainable harvesting rather than complete bans to promote conservation. This article summarizes the recovery plan and its current effects on the status of M. vitiense in Fiji. We also discuss the role of different stakeholders in the conservation of M. vitiense, including the absence of significant behavioral changes by the largest consumer - the tourism industry, and the importance of recovery plans for biodiversity conservation in the Pacific.  相似文献   

19.
Human-induced global climate change presents a unique and difficult challenge to the conservation of biodiversity. Despite increasing attention on global climate change, few studies have assessed the projected impacts of sea-level rise to threatened and endangered species. Therefore, we estimated the impacts of rising sea levels on the endangered Lower Keys marsh rabbit (Sylvilagus palustris hefneri) across its geographic distribution under scenarios of current conditions, low (0.3-m), medium (0.6-m), and high (0.9-m) sea-level rise. We also investigated the impacts of allowing vegetation to migrate upslope and not allowing migration and of two land-use planning decisions (protection and abandonment of human-dominated areas). Not surprisingly, under all simulations we found a general trend of decreasing total potential LKMR habitat with increasing sea-level rise. Not allowing migration and protecting human-dominated areas both tended to decrease potential LKMR habitat compared with allowing migration and abandoning human-dominated areas. In conclusion, conservation strategies at multiple scales need to be implemented in order to reduce the impact of global climate change on biodiversity and endangered species. At the regional level, managers must consider land-use planning needs that take into account the needs of both humans and biodiversity. Finally, at the local scale those agencies that are in charge of endangered species conservation and ecosystem management need to rethink static approaches to conservation or else stand by and watch ecosystems degrade and species go extinct. This can be accomplished by bioclimatic reserve systems where climatically underrepresented areas are included in conservation planning along with the standard concerns of threat, opportunity, connectivity, and viability.  相似文献   

20.
The Clinch River of southwestern Virginia and northeastern Tennessee is arguably the most important river for freshwater mussel conservation in the United States. This featured collection presents investigations of mussel population status and habitat quality in the Clinch River. Analyses of historic water‐ and sediment‐quality data suggest that water column ammonia and water column and sediment metals, including Cu and Zn, may have contributed historically to declining densities and extirpations of mussels in the river's Virginia sections. These studies also reveal increasing temporal trends for dissolved solids concentrations throughout much of the river's extent. Current mussel abundance patterns do not correspond spatially with physical habitat quality, but they do correspond with specific conductance, dissolved major ions, and water column metals, suggesting these and/or associated constituents as factors contributing to mussel declines. Mussels are sensitive to metals. Native mussels and hatchery‐raised mussels held in cages in situ accumulated metals in their body tissues in river sections where mussels are declining. Organic compound and bed‐sediment contaminant analyses did not reveal spatial correspondences with mussel status metrics, although potentially toxic levels were found. Collectively, these studies identify major ions and metals as water‐ and sediment‐quality concerns for mussel conservation in the Clinch River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号