首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pumping rates in Mytilus edulis L. were measured by means of a constant-level-tank method, in which hydrostatic pressure differences between inhalant and exhalant water levels were recorded by means of a laser beam reflected from a tethered mirror floating on the water surface. Hydrostatic pressure gradients were determined to ±0.05 mm H2O or better. The developed technique of directly measuring pumping rates in mussels is not subject to the artefacts of other methods. The pumping rates measured in M. edulis were substantially higher than those previously determined by means of direct techniques, but similar to the maximum filtration rates, as obtained by means of two indirect techniques, i.e. about 50 ml min-1 for a 0.15 g dry weight mussel. Positive hydrostatic pressures drastically affected water pumping. The pumping rate decreased linearly with increasing hydrostatic pressures towards a maximum pump pressure between 3 and 5 mm H2O. Negative pressures only affected the pumping rate slightly or insignificantly, except when the mussels were exposed to rapidly increasing negative pressures. Under this condition a shunt was presumably established between the inner demibranchs, allowing water to bypass the gills.  相似文献   

2.
With the re-evaluation and revision of a number of design floods, several embankment overtopping protection systems have been developed and a common technique is the construction of a stepped spillway on the downstream slope. For such moderate slope stepped channels, detailed air–water flow measurements were performed in a large facility with a focus on the rate of energy dissipation, flow resistance, air–water interfacial areas and re-aeration rates. Past and present experimental results showed a significant aeration of the flow. The median dimensionless residual head was about 3 × dc for the 21.8° sloping chute and smaller than that for flatter slopes (θ = 3.4° and 15.9°). The flow resistance results yielded an equivalent Darcy friction factor of about 0.25 implying a larger flow resistance for the 21.8° slope angle than for smaller slope angles. The re-aeration rate was deduced from the integration of the mass transfer equation using measured air–water interfacial areas and air–water flow velocities. The results suggested an increasing re-aeration rate with increasing rate of energy dissipation. The stepped invert contributed to intense turbulence production, free-surface aeration and large interfacial areas. The experimental data showed however some distinctive seesaw pattern in the longitudinal distribution of air–water flow properties with a wave length of about two step cavities. While these may be caused by the interactions between successive adjacent step cavities and their interference with the free-surface, the existence of such “instabilities” implies that the traditional concept of normal flow might not exist in skimming flows above moderate-slope stepped spillways.  相似文献   

3.
Rates of NO 3 - uptake by individual blades of Macrocystis pyrifera (L.) C. Agardh were measured at different flow rates in the laboratory. Dissolution rates of hemispherical, plaster buttons attached to the blade surface provided a relative measure of flow rates over blades used in uptake experiments and also over intact blades of adult kelp plants in situ (Laguna Beach, California, USA; 1981). Laboratory results indicated that uptake was saturated at a flow rate equivalent to 2.5 cm s-1 current velocity. Flow rates over intact blades in situ always exceeded this uptake saturation level. Wave surge and movement of plant surfaces relative to the surrounding water provided sufficient flow to saturate uptake, even in a dense kelp canopy during low-current and calm sea-state conditions.  相似文献   

4.
To elucidate the effects of temperature and algal cell concentration on pumping of water in the ascidian Ciona intestinalis a number of different experiments were performed. Beat frequency of the lateral cilia in the openings of the branchial sac was measured in intact specimens using a microprojection objective and a monochrome CCD video camera. At constant low algal cell concentration, beat frequencies increased linearly with temperature from 4.0 Hz (±0.5) at 7.4 °C to 13.6 Hz (±1.6) at 20.1 °C. At a constant temperature of 15 °C, beat frequency decreased with increasing algal cell concentration from approximately 3000 to >10 000 Rhodomonas sp. cells ml−1. The decrease was observed both in experiments where the ascidians had been acclimated to a fixed algal cell concentration and in experiments with changing concentrations. Effect of algal cell concentration on squirting/siphon closure and flow velocity in the exhalent siphon was measured using a thermistor. At low algal cell concentrations, flow velocity in the exhalent siphon was stable, apart from a few short squirts. At very high algal cell concentrations, the flow velocity was reduced and much less stable, with prolonged squirting. The effect of gut content on filtration was studied in experiments with specimens acclimated to high algal cell concentrations. Results showed a close relation between gut clearance and filtration rate. From the experimental results and a qualitative analysis of the Ciona-pump it was concluded that the ciliary beat frequency is proportional to the water flow through the sea squirt and that changes in pumping caused by temperature or algal cell concentration are under nervous control or governed by enzyme kinetics, rather than being a result of physico-mechanical properties, i.e. pump efficiency versus flow resistance, of the ascidian pump. Received: 6 October 1997 / Accepted: 8 October 1998  相似文献   

5.
An exposure chamber, the clambox, was developed to measure ventilation rate, sediment processing rate, and efficiency of pollutant uptake by Macoma nasuta conrad, a surface deposit-feeding clam. Clams, collected from Yaquina Bay, Oregon, USA, were cemented into a hole in a piece of rubber dental dam so that the inhalant and exhalant siphons were separated by a membrane. The dental dam was then clamped between two glass chambers. The inhalant and exhalant siphons were thus directed into separate chambers of the device so that the amounts of water or feces discharged into the exhalant chamber provided direct measures of ventilation rate and sediment processing rate, respectively. Clams exhibited no stress from the procedure. Ventilation rate was not affected by the imposition of a 5 mm hydraulic head in the exhalant chamber, by having sediment only in the inhalant chamber, or by exposure to organic-free sediment. The mean weight-specific ventilation rate for M. nasuta was 7.3 ml g-1 h-1 on a wet-flesh basis. This low rate, compared to rates for filter-feeding bivalves, supports the contention that deposit-feeding is the dominant feeding mode for M. nasuta. The short-term pattern was for ventilation to be intermittenly interrupted, essentially ceasing for 12 to 120 min, followed by a short period of active ventilation and then a resumption of the normal rate. Less than 3% of the total water flux could be attributed to water which entered the body cavity across the mantle margin. Water exhaled from the inhalant siphon during the ejection of pseudofeces was <10% of the ventilation rate. The clambox technique should be adaptable to studies on other tellinid bivalves.  相似文献   

6.
Specimens of Ciona intestinalis L. were exposed to both gradual (sinusoidal) and abrupt (square-wave) salinity fluctuations and the changes in pumping activity and oxygen sonsumption monitored. Heart rate was monitored under steady state conditions using a new in vivo method, and pumping activity was monitored as spontaneous squirting by use of a pressure transducer. Oxygen consumption was also monitored under steady state conditions and under conditions of declining oxygen tension. It was found that during periods of regular beating the mean heart rate for 5 ascidians was 13.2 beats min-1 for the branchial pacemaker and 32.6 beats min-1 for the visceral pacemaker. Regular periods of beating lasted for approximately 1 min, followed by periods of irregular activity prior to heart beat reversal. The heart beat became irregular and reversal occurred sporadically when the ascidians were exposed to dilute seawater. The ascidians showed a pumping rate of 14 squirts per hour in full-strength seawater. This rate declined during decreasing salinity and ceased entirely when the external seawater concentration reached approximately 60% seawater (100%=32% S). During periods of decreased salinity, the siphons were tightly closed and oxygen consumption was zero. The rate of oxygen consumption by C. intestinalis decreased during decreasing salinities and there was no evidence of an oxygen debt. Oxygen consumption under steady state conditions varied with body weight according to the following: oxygen consuption =0.515 W 0.831 (where W is body weight). The rate of oxygen consumption was found to be dependent on the external oxygen tension.  相似文献   

7.
Meretrix meretrix L. was held in the laboratory under simulated natural conditions to measure specific physiological parameters of its energy budget. O2 consumption rate, NH3 excretion rate (NR), ingestion rate, faeces excretion rate and scope for growth (SFG) were negatively related in an exponential manner to the fresh weight of the clams at all water temperatures, while almost all metabolic rates of the clams were positively related in an exponential or e-exponential manner with water temperature. However, the co-relationship between metabolic rates and water temperature was not as close as that between metabolic rates and fresh weight of the clam. The combined effect of fresh weight and water temperature was observed on all metabolic rates except for NR and SFG. At all culture temperatures and for all fresh weights of clams used, respiration took the largest percentage of ingested energy (41.5–51.2%), faeces excretion was second (31.0–42.3%), growth third (12.1–15.5%) and urine production last (2.1–5.6%).  相似文献   

8.
In this study, we tested the hypothesis that the importance of water flow for skeletal growth (rate) becomes higher with increasing irradiance levels (i.e. a synergistic effect) and that such effect is mediated by a water flow modulated effect on net photosynthesis. Four series of nine nubbins of G. fascicularis were grown at either high (600 μE m−2 s−1) or intermediate (300 μE m−2 s−1) irradiance in combination with either high (15–25 cm s−1) or low (5–10 cm s−1) flow. Growth was measured as buoyant weight and surface area. Photosynthetic rates were measured at each coral’s specific experimental irradiance and flow speed. Additionally, the instantaneous effect of water flow on net photosynthetic rate was determined in short-term incubations in a respirometric flowcell. A significant interaction was found between irradiance and water flow for the increase in buoyant weight, the increase in surface area, and specific skeletal growth rate, indicating that flow velocity becomes more important for coral growth with increasing irradiance levels. Enhancement of coral growth with increasing water flow can be explained by increased net photosynthetic rates. Additionally, the need for costly photo-protective mechanisms at low flow regimes could explain the differences in growth with flow.  相似文献   

9.
Algal turfs are the major primary producing component on many coral reefs and this production supports higher levels in the complex reef trophic web. Rates of metabolism of algal turfs are related positively to water motion, consistent with limitation by the diffusion of a substance through a boundary layer. Based on engineering mass transfer theory, we hypothesized that photosynthesis of algal turfs is controlled by rates of mass transfer and responses of photosynthesis to increasing flow speed should be predicted by engineering correlations. This hypothesis was tested in ten experiments where photosynthesis was estimated in a flume/respirometer from changes in dissolved oxygen at eight flow speeds between 0.08 and 0.52 m/s. Flow in the flume and over the reef at Kaneohe Bay, Oahu, Hawaii was estimated using hot-film thermistor and electromagnetic current meters. Rates of photosynthesis were related positively to flow in all experiments and plots of the log of the average Sherwood number (Sh meas) versus log Reynolds number (Re D) for each experiment are lower than predicted for mass transfer through a turbulent boundary layer. Algal turf-covered plates are characterized as hydrodynamically transitional to fully rough surfaces and the lower than predicted slopes suggest that roughness reduces rates of mass transfer. A negative correlation between algal turf biomass and slopes of the log Sh meas−log Re D plots suggests that mass transfer to algal turfs is affected significantly by the physical structure of the algal community. Patterns of photosynthesis based on changes in dissolved oxygen and dissolved inorganic carbon concentrations (DIC) indicate that the flow speed effect is not the result of increased flux of oxygen from the algal turfs, and combined with the short response time to flow speed, suggest that DIC may limit rates of photosynthesis. Although there are differences between flow in the flume and flow over algal turfs on the reef, these results suggest that photosynthesis is controlled, at least in part, by mass transfer. The chemical engineering approach provides a framework to pose further testable hypotheses about how algal canopy height, flow oscillation, turbulence, and substratum roughness may modulate rates of metabolism of coral reef algal turfs.  相似文献   

10.
Measurements of the O2 microdistribution around relict tubes of the polychaete Spiochaetopterus bergensis revealed an intense passive flushing of the tube structure if exposed to ambient flow. Flushing induced plumes, several microliters large, of O2-undersaturated water that spread downstream in a flow-dependent manner. The plume induced a very irregular interstitial O2 distribution around the tubes, with suboxic microniches. Mass balance calculations based on the measured exchange rates estimated the flushing rate of the relict tubes to be on the order of 5–11 μl tube−1 min−1 at the applied flow rates; this strongly enhanced the benthic solute exchange in the area. Given the high density of several thousand tubes per square meter in the central Skagerrak, this flushing rate has profound effects on the biogeochemistry of the otherwise impermeable sediment, which is unique in the sense that benthic diagenesis is completely dominated by manganese oxidation. Published online: 22 August 2002  相似文献   

11.
The influence of temperature has been studied simultaneously on the pumping, filtration, and digestion rates of Phallusia mammillata (Cuvier, 1815). Eighteen experiments were made between 7° and 25°C on 5 individuals. The average velocities of the water current varied between 3.37 and 9.65 cm sec-1 (maximum 34.90 cm sec-1). No recognizable rhythm emerged; pumping was continuous except at 7°C, where it soon ceased. Above 20°C, the curves were irregular and reflected the high sensitivity of the ascidian. The pumping rate was highest at 15°C (mean=5,788 ml h-1 g-1 dry weight of organs). At 10°C, the mean was 3,560; at 20°C, 2,629 ml h-1 g-1 dry weight of organs. At 20°C, the coefficients of variation displayed higher values, indicating a more irregular pumping at this temperature. Although there was no filtration rhythm, the variability of the results was higher at 20°C and above. As for pumping, maximum values were observed at 15°C (mean=4,286 ml h-1 g-1 dry weight of organs) decreasing with lower and higher temperatures, such decreases being more marked at the higher temperatures. Means were 352 ml h-1 g-1 dry weight of organs at 7°C; 2,935 at 10°C; 1,995 at 20°C; 973 at 25°C. The mean temperature coefficients for the filtration rates were: Q10 for 7° to 15°C=11.86, Q10 for 10° to 20°C=0,66, Q10 for 15° to 25°C=0.22. The filtering efficiency was fairly constant throughout an experiment; the pumping and filtration curves were in fact almost parallel. The filtering efficiency of the branchial sac was high (75 to 85%), with constant values at 10° and 15°C; it became smaller (59%) at 20°C, with a higher coefficient of variation. The digestion rate also displayed maximum values at 15°C (mean=5.47 mg of albumin equivalent 24 h-1 g-1 dry weight of organs). It was lower at 10°C (mean=3.60 mg) and reached its minimum at 20°C (mean=1.71 mg). The higher temperature affected the percentage of food utilization, which showed smaller values at 20°C (59%) than at 10°C (89%) and 15°C (87%).  相似文献   

12.
We investigated the feeding habits and growth of juvenile stone flounder (Platichthys bicoloratus) in several estuarine nurseries in Sendai Bay, Japan. Prey abundance and composition and juvenile diet varied largely among sites. However, polychaete palps (mostly Pseudopolydora kempi) and bivalve siphons (mostly Nuttallia olivacea) were positively selected and frequently consumed by juveniles, indicating the generality of sublethal feeding of juvenile stone flounder in estuarine nurseries. Recent growth rates determined by otolith microstructure analyses were dependent on juvenile body size and water temperature, but independent of juvenile density and food abundance. Growth rates were nearly maximal from March to May, suggesting that food conditions are nearly optimal in these estuarine nurseries. Sublethal tissue cropping of benthic invertebrates is thought to contribute largely to these high growth rates.  相似文献   

13.
R. G. Kvitek 《Marine Biology》1991,111(3):369-374
Saxidomus giganteus (butter clams), are known to sequester diet-derived paralytic shellfish toxins (PST), highly potent neurotoxins, in their siphons. Captive staghorn sculpins (Leptocotus armatus), a marine fish species known to crop bivalve siphons, developed a significant aversion to siphons from toxic but not non-toxicS. giganteus following a single conditioning feeding of toxic siphon tissues. Control fish showed no aversive response to siphons from non-toxicS. giganteus during 11 feeding sessions over 56 d. Aversive and non-aversive behavior varied with the toxicity of the siphons, but not with the geographic origin of the clams. Both experimental and control fish ate freely and showed no aversion to siphons from toxic littleneck clams (Protothaca staminea). Littleneck clams, unlikeS. giganteus, retain PST in their visceral mass but not in their siphons. Both toxic and non-toxicS. giganteus extended their siphons significantly more often and higher above the sediment surface during dark hours, but toxicS. giganteus extended their siphons higher than non-toxic individuals. These results support the hypothesis that siphon-nipping by fish may have selected for the retention of PST in butter clam siphons as a chemical defense.  相似文献   

14.
A method for determining filtration rates in undisturbed suspension-feeding bivalves is described. Concentrations of particulate matter in the water collected in the inhalant (C i) and exhalant (C e) currents were estimated with an electronic particle counter. The clearance was calculated as , where Fl=flow rate through the tube collecting exhalant water. Only above critical levels of water flow (Fl) were clearances representative of filtration rates. At 10° to 13°C, the filtration rates (F, 1 h-1) within one or two orders of magnitude of dry weight (w, g), in Cardium echinatum L., C. edule L., Mytilus edulis L., Modiolus modiolus (L.) and Arctica islandica (L.) followed the allometric equations: 4.22w 0.62, 11.60w 0.70, 7.45w 0.66, 6.00w 0.75 and 5.55w 0.62, respectively. Five species of bivalves [Spisula subtruncata (da Costa), Hiatella striata (Fleuriau), Cultellus pellucidus (Pennant), Mya arenaria L. and Venerupis pullastra (Montagu)] filtered with the same rates as individuals of Cardium echinatum and A. islandica of equivalent soft weight. In Pecten furtivus and P. opercularis filtration rates were about twice the rates measured in individuals of Mytilus edulis of comparable body weight. The gill area in M. edulis increases with size at the same rate as the filtration rate.  相似文献   

15.
The filtration activity of the Mediterranean mussel, Mytilus galloprovincialis, was assessed under different concentrations and compositions of seston by using a new automated image acquisition and analysis system. This approach allowed for frequent and simultaneous measurements of valve gape and exhalant siphon area. Filtration rates were measured through clearance measurements whereas pumping rates were measured using hot-film probes. The average filtration rate (17.5 l g h−1 DW−1 for a 0.36 g DW mussel) recorded during the present study was higher than those available for Mytilus edulis when standardized to flesh dry weight but almost equivalent (17.5 l h−1 g DW−1 for a 53 mm shell length mussel) to those rates when standardized to shell length. Immediately after the addition of algal cells (Isochrysis galbana; 4.5 μm in size), valve gape, exhalant siphon area and filtration rate increased quickly as mussels reached their maximum filtration activity. These three parameters then gradually decreased until complete closure of the shell. The algal cell concentration inducing this transition was close to 800 cells ml−1 and 0.5 μg Chl a l−1. When algal concentration was maintained above this threshold by successive algal additions, both valve gape and exhalant siphon area remained maximal. Temporal changes in the exhalant siphon area were continuous as opposed to those of valve gape. Therefore, despite the significant correlation between these two parameters, valves and siphon were sometimes dissociated due to a reduction of the area or even a closure of the exhalant siphon while the valves remained open. The velocity of exhaled water tended to be constant irrespective of exhalant siphon area and thus pumping rates were a linear function of exhalant siphon area. Consequently, reductions in exhalant siphon area and pumping rate were almost similar in M. galloprovincialis. Our results thus clearly support the hypothesis that exhalant siphon area constitutes a better proxy of pumping rate than valve gape as already suggested for Mytilus edulis. Finally, the high filtration rates measured during the present study together with the high concentrations of inorganic matter (> 40 mg DW l−1) requested to alter those rates suggest that the studied mussels were well adapted to oligotrophic waters featuring strong hydrodynamism and frequent sediment resuspension events.  相似文献   

16.
The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba specimens with Clark-type oxygen microelectrodes (tip diameters 18–30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges, which allows total oxygen consumption rates of 6–12 μmol cm−3 sponge day−1. Sponges of different sizes had similar diffusional uptake rates, which is explained by their similar surface/volume ratios. In pumping sponges, oxygen consumption rates were between 22 and 37 μmol cm−3 sponge day−1, and the entire tissue was oxygenated. Combining different approaches of direct oxygen measurement in living sponges with a dynamic model, we can show that tissue anoxia is a direct function of the pumping behavior. The sponge-microbe system of A. aerophoba thus has the possibility to switch actively between aerobic and anaerobic metabolism by stopping the water flow for more than 15 min. These periods of anoxia will greatly influence physiological variety and activity of the sponge microbes. Detailed knowledge about the varying chemical microenvironments in sponges will help to develop protocols to cultivate sponge-associated microbial lineages and improve our understanding of the sponge-microbe-system.  相似文献   

17.
Simulations provide an opportunity to examine how single or multiple perturbations may impact a specific species. The objectives of this study were to identify thresholds at which changes in stream peak flow, stream base flow, and/or chytrid fungus presence alter long-term Rana chiricahuensis populations. We used scenarios with varying peak flow mortality rates, base flow mortality rates, and chytrid fungus mortality rates. Sensitivity analysis was also conducted. Over 50 years, populations in six scenarios increased and 13 scenarios decreased. Eight scenarios resulting with fewer than 100 individuals included stochastic effects for at least two of three perturbations and the remaining scenarios included chronic effects of 30% or higher. Scenarios with population increases had either no chytrid fungus effect or chronic effects from perturbations totaling less than 30%. In the absence of chytrid fungus, populations increased and became stable. At a 10% annual death rate caused by chytrid fungus, the R. chiricahuensis population decreased 46.8%. At a 20% death rate, the population decreased 98.6%. Model scenarios were sensitive to peak flow death rates. As peak flow mortality increased to 10 and 20%, extinction rates increased to 91.7 and 99.9%, respectively. With model parameters and the no base flow mortality, R. chiricahuensis populations declined by 92% with a 3.2% extinction rate at 50 years. Models with base flow mortality rates of 10 and 20% resulted in population extinction rates of 48.7 and 96.1%, respectively. Scenario analysis of perturbations on a hypothetical R. chiricahuensis population provided a framework in which to view combined effects on a species. Analysis supports supposition that chytrid fungus is the proximate cause of many amphibian declines, but the added effect of base flow and peak flow has the potential to hasten declines.  相似文献   

18.
The infaunal bivalve Ruditapes decussatus L. was collected from Ria Formosa, Faro, southern Portugal, and subjected to a range of hypoxic conditions and anoxia. Physiological measurements, clearance rates, respiration rates and absorption efficiency were undertaken at slightly different oxygen partial pressures (11, 6, 3 and 1.2 kPa for clearance rates and absorption efficiency and 12, 7, 5, 1.9 and 0.9 kPa for respiration rates). Metabolic rates under hypoxia were measured as oxygen consumption and anoxic metabolism was measured using direct calorimetry. Increasing hypoxia resulted in lower clearance rates, leading to lower ingestion rates and reduced faeces production. Clearance and ingestion rates declined below ˜6 kPa, reflecting decreasing ventilation and feeding activity, although complete cessation was not observed even at 1.2 kPa. Under extreme hypoxia (< 2 kPa) clams showed an irregular behaviour, with valves either closed or only slightly open, and siphons compressed or retracted. Clearance rate was 12% and respiration rate was 35% of normoxic rates. R. decussatus responded to increasing hypoxia by lowering its metabolic rate. Regulation of respiration was absent through moderate hypoxia (˜␣7␣kPa), but was observed in the lower hypoxia range (7 to 0.9 kPa). Under anoxia, rates of heat dissipation were 3.6% of normoxic rates. The low anoxic metabolic rate is indicative of a reduced energy expenditure, and this energy-saving mechanism is common in bivalves. Scope for growth was always pos itive, and even at low oxygen levels clams did not have to utilize their energy reserves. The ability to reduce metabolic costs but still meet the maintenance costs by aerobic catabolism enables R. decussatus to tolerate hypoxia. Such conditions can occur, particularly in the summer, in southern Portugal. Received: 19 July 1996 / Accepted: 17 September 1996  相似文献   

19.
The relationship between activity of the lateral cilia and oxygen consumption was studied in fragments of the gills of Mytilus edulis L., and the effects of stimulation with the nerve transmitters serotonin and dopamine were measured. Beat frequency, f, and oxygen consumption, MO 2, increased with increasing doses of the transmitters. Serotonin increased f up to 26 Hz and the relationship with MO 2 could be described by MO 2 (l cm-2 gill area h-1)=0.44+0.35 f (r=0.99). The relationship after dopamine stimulation did not differ from that established by serotonin, but the maximum value of f was only 19 Hz. At the frequency of 10 Hz, characteristic of undisturbed pumping, the cells carrying the lateral cilia were estimated to account for one third of the total oxygen consumed, equivalent to 1.05×10-10 mol ATP cm-2 s-1. This rate of synthesis of ATP was compared with the rate at which the active cilia hydrolyse ATP. ATP hydrolysis ranged from 58 to 87% of synthesis as the assumed ratio between number of ATP molecules hydrolysed per beat and number of dynein molecules ranged from 2 to 3. The rate at which ATP is hydrolysed by the active cilia was compared with the work done in pumping water. At two estimates available of the pumping pressure, 1.4 and 2.5 mm H2O, the work amounted to 1.4×10-6 or 2.5×10-6 joule cm-2 s-1, equivalent to 2.9×10-11 and 5.2×10-11 mol ATP cm-2 s-1. The efficiencies of work thus corresponded to 48 or 86% at the ATP/dynein ratio of 2. The overall efficiencies of the mussel pump amounted to 18 or 32%.  相似文献   

20.
Grazing rates and electivity indices of larvae and spat of Ostrea edulis L. were, measured and examined in relation to certain physical parameters using a flow-through system. Retention and size-selection were determined for the major particle sizes present in cultures of Isochrysis galbana Parke, an alga used frequently as food for bivalves. Cultures of the algae Dunaliella tertiolecta Butcher and Phaeodactylum tricornutum Bohlin were used as sources of particle suspensions of various sizes and shapes, respectively. While increases in flow rate caused increased grazing, the mode of selection of I. galbana particles remained constant. Filtration rate, F f was related to body size, W, by the general allometric equation R f =aW b,while particle-size preference in suspensions of I. galbana by both larvae and spat of O. edulis was independent of W. Grazing rates increased with temperature to an optimum temperature, which was related to the acclimation temperature. Increases above this optimum caused a reduction in feeding activity. No significant change in particle size-preference in the I. galbana suspension with temperature was observed. Grazing rates and selection were dependent, however, on particle number and volume. Both larvae and spat displayed maximum retention at optimum particle concentrations which tended to decrease with increasing particle size. Variations in cell shape of P. tricornutum had no measurable effect on selectivity by O. edulis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号