首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
生物膜技术是厌氧氨氧化工艺应用的关键,但关于不同生境氨氮浓度和悬浮污泥协同作用下形成的生物膜特性鲜有报道。本研究在推流式固定生物膜-活性污泥反应器中,发现在高氨氮浓度下生长的生物膜具有较高的污泥量和厚度,但低氨氮浓度生长的生物膜具有更高的厌氧氨氧化菌丰度((4.91±0.65)×109 拷贝数·g−1,P<0.05)和厌氧氨氧化比活性(6.53 mg·(g·h)−1)。高通量分析结果表明,Candidatus Brocadia是生物膜和悬浮污泥中主要的厌氧氨氧化菌,在两类生物膜上的丰度未有显著差异;在低氨氮浓度生物膜中Candidatus Jettenia的相对丰度显著高于高氨氮浓度的生物膜,但Candidatus Kuenenia的丰度则相反。综合分析发现,厌氧氨氧化菌种的附着生长与悬浮污泥群落多样性的初始定殖有关,而低丰度菌种的分布则受不同生境的影响,该结果表明不同氨氮浓度和悬浮污泥类型的选择对生物膜的协同影响不可忽略。  相似文献   

2.
采用PCR-DGGE技术直接从水解酸化和缺氧反应器中的污泥样品提取DNA,测定部分菌种的16S rDNA V3区片段序列,通过NCBI基因库比对,初步确定不同生物反应器内优势菌种,并进行了多样性指数分析.结果表明,水解酸化反应器中的生物膜与缺氧反应器中悬浮污泥微生物种群结构存在较大的差异,显示了在不同环境条件下,微生物群落结构的连续动态变化过程.  相似文献   

3.
随着纳米材料的广泛应用,越来越多的纳米材料随着废水进入污水处理厂,纳米材料对污水生物处理系统的潜在影响越来越受到重视。探讨了氧化锰八面体分子筛(manganese oxide octahedral molecular sieve, OMS-2)纳米颗粒对序批式反应器(sequencing batch reactor,SBR)中活性污泥微生物群落结构的影响;以活性艳红X-3B溶液模拟印染废水,将不同浓度的OMS-2混入稳定运行的SBR中,采用Illumina MiSeq高通量测序分析技术,对不同SBR中微生物分布规律进行了研究。结果表明:SBR添加0.25 g·L−1的OMS-2后,其COD去除率和脱色率分别提升了6%和13.6%;Illumina MiSeq高通量测序显示,在混入0.25 g·L−1的OMS-2后,SBR内污泥菌群中拟杆菌门(Bacteroidetes)和变形菌门(Proteobacteria)的微生物DNA序列操作分类单元(operational taxonomic units,OTU)分别增加了16.8%和96.4%,这2类菌种可能提升了SBR降解有机污染物的能力;不同浓度的OMS-2改变了菌群的多样性和结构,低浓度的OMS-2可以提升微生物菌群的多样性和改变菌群的结构。X射线光电子能谱(XPS)分析表明,OMS-2在SBR中存在锰(Ⅳ)/锰(Ⅲ)转变为锰(Ⅱ)的氧化还原反应,该过程可能影响了菌群的组成。研究为纳米材料的实际应用和环境风险提供了参考。  相似文献   

4.
为了考察运行方式对厌氧氨氧化系统脱氮性能及菌群结构的影响,建立一套厌氧移动床生物膜反应器,在(25±1) ℃恒温、低基质(TN≤60 mg·L−1)条件下,分别以连续式和间歇式方式运行,采用高通量测序,基于直系同源蛋白簇基因(COGs),对16S rRNA扩增子测序结果进行功能预测,来表征微生物菌群结构和微生物功能的变化。结果表明:系统总氮负荷为(227±13) mg·(L·d)−1时,间歇式运行脱氮效率(90.6%)优于连续式运行效率(74.6%),生物膜厌氧氨氧化细菌的相对丰度高于悬浮污泥;反应器由连续式变为间歇式运行后,主要功能菌属Ca. Brocadia丰度降低,同时,具有部分反硝化作用的Pseudomonas菌丰度出现明显升高。进一步分析可知,在适量的有机物条件下,间歇式运行能够获得更好的厌氧氨氧化与反硝化协同处理效果。本研究结果可为污水处理厂的实际运行提供参考。  相似文献   

5.
采用移动床生物膜反应器(MBBR)处理已回收磷后的实际污泥水,在进水平均氨氮浓度为167.51 mg·L−1、HRT为22.24 h、DO为0.5 mg·L−1和温度为24~26 ℃的条件下实现了一体式短程硝化-厌氧氨氧化过程的耦合,对氨氮和总无机氮的最大去除率可达96%和79.7%。但是,一体式反应器受DO浓度影响较大,维持稳定的DO浓度对于系统的氮去除非常重要。荧光原位杂交(FISH)及高通量测序结果表明,MBBR的生物膜及活性污泥中Nitrosomonas菌分别占总菌数的10.46%和21.46%,厌氧氨氧化菌的优势菌种Candidatus Kuenenia在生物膜和活性污泥中分别占总菌数的4.13%和0.71%。因此,MBBR中活性污泥主要完成亚硝化,生物膜主要完成厌氧氨氧化,常温条件下,两者在一个反应体系中共同完成了对污泥水中氮的高效自养脱除。以上结果表明了一体式反应器处理实际污泥水的可行性,可为该工艺在实际工程中的应用提供参考。  相似文献   

6.
尹朗  赵丹  张素佳  王海波 《环境工程学报》2016,10(10):5453-5458
通过454高通量测序对北方A和B两实际饮用水管网系统中生物膜细菌群落特征进行表征,并研究了其对管网腐蚀产物组成的影响。结果表明,A管网生物膜细菌群落丰度和多样性高于B管网生物膜。在门水平上,两管网生物膜细菌群落主要为变形菌门Proteobacteria,但B管网生物膜中的相对丰度(67.10%)高于A(46.50%)。在纲水平上,A管网生物膜主要为β-变形菌纲Betaproteobacteria,B管网生物膜中主要为β-变形菌纲Betaproteobacteria和δ-变形菌纲Deltaproteobacteria。在属水平上,A管网生物膜中腐蚀相关菌群主要为硝酸盐还原菌和铁还原菌,其腐蚀产物主要为α-FeOOH和Fe3O4,而B管网生物膜中硫酸盐还原菌特别是脱硫弧菌属Desulfovibrio含量较高,其可能与管垢中绿锈含量高有关。  相似文献   

7.
为研究北方某污水厂经过MBBR提标改造后,在秋冬季进水碳源较低的条件下生化段脱氮除磷率高于理论值的原因,采用沿程水质测定法及小试实验的方法验证其脱氮除磷效果,并通过基于16S rRNA的高通量测序对好氧段微生物菌群进行分析。结果表明,系统在好氧区存在显著的TN去除,去除率约占15%~20%,在缺氧区存在显著的TP去除,去除率高达63.04%,显示系统内发生了同步硝化反硝化(SND)和反硝化除磷现象。通过小试实验验证了好氧SND现象主要来自于悬浮载体,得益于悬浮载体生物膜功能菌分层分布;反硝化除磷现象则得益于系统较长的缺氧停留时间及较短的泥龄。系统中SND和反硝化除磷的存在是系统在低碳源消耗条件下取得高效脱氮除磷效果的主要原因;微生物菌群分析验证了SND现象主要来源于悬浮载体;悬浮载体上硝化菌群相对丰度为28.56%,是污泥的14倍,反硝化菌相对丰度约8.34%,为SND效果的发生提供了微观保证;污泥中存在Candidatus AccumulibacterAcinetobacterTetrasphaera,为该污水厂存在反硝化除磷及高效除磷现象提供了微观证据。  相似文献   

8.
为了揭示贫营养环境下MBR污泥微生物群落结构的演替和菌群变化的异同,取洗浴再生水、工业再生水MBR的污泥进行周期培养,利用PCR-DGGE和克隆测序技术获得了DNA指纹图谱并建立系统发育树。研究表明,微生物群落结构在贫营养条件下演替明显,洗浴水污泥微生物形成新的优势菌群(Uncultured Pseudomonas)而工业水只维持了原有的部分菌群(Uncultured Sphaerotilus)。2种污泥培养过程中种群多样性变化突出且差异显著。同时洗浴水污泥菌群相似性在培养第8天时发生突变而工业水总体变化平缓。克隆测序表明2种MBR污泥中既有与贫营养环境适生的共性种属又有与各自来源相对应的特性种属。菌群特异性与废水来源紧密相关,是造成2种污泥对贫营养环境适应能力不同的根本原因。  相似文献   

9.
尤星怡  冯鑫  潘杨  黄勇  徐林建 《环境工程学报》2019,13(10):2426-2433
针对同步去除与富集磷酸盐溶液的问题,研究了在低磷环境和低磷高磷交替环境下悬浮填料生物膜反应器的除磷能力和释磷能力,采用扫描电子显微镜(SEM)和高通量测序对第0、45和95天的污泥进行了表征。结果表明:低磷环境下好氧出水磷酸盐浓度稳定在0.5 mg·L−1以下,厌氧阶段的最大释磷量为6.05 mg·L−1;在低磷高磷交替环境中,好氧出水磷酸盐浓度基本在0.5 mg·L−1以下,富磷溶液浓度最高可达63 mg·L−1。SEM结果表明,同步去除与富集磷酸盐的悬浮填料生物膜反应器中的主要微生物是杆状菌。高通量测序结果表明:第0、45和95天的变形菌门(Proteobacteria)的相对丰度分别为48.3%、57.1%和89.1%,占主导地位;而红环菌科(Rhodocyclaceae)的相对丰度分别为18.1%、19.0%和30.8%,是反应器中的优势菌科;动胶菌属(Zoogloea)是同步去除与富集磷酸盐的悬浮填料生物膜工艺中的主要功能菌。在悬浮填料生物膜工艺中,低磷高磷交替的生长环境下培养的聚磷生物膜能够使好氧出水的磷酸盐浓度达到国家排放标准,并在厌氧阶段得到高浓度的磷酸盐富集溶液,且这种生长环境更适合聚磷微生物的生长。  相似文献   

10.
以供氧策略和进水氨氮浓度为控制因素,应用PCR-DGGE技术并结合系统处理效果研究SBR内活性污泥微生物群落结构的演替情况。结果表明,在一定范围内,进水氨氮浓度越小越有利于COD和氨氮的去除,同时污泥性状主要受供氧时间的影响,运行前40 d,MLSS值均在4 000 mg·L~(-1)以上波动。微生物群落结构受供氧的影响演替剧烈,多样性指数在时间上呈先增后减的变化趋势,曝停比为4 h∶2 h的间歇曝气B方案下菌种最丰富,多样性指数达1.092、1.079。切胶测序结果显示,SBR系统内微生物菌种大部分为未培养菌种,其中酸杆菌属和绿弯菌属占据优势地位,这些菌种在污水生物处理中对污泥性能和系统的运行有重要的影响。  相似文献   

11.
为了解斑石鲷循环水养殖系统生物滤池内部细菌群落组成及其净水机制,通过高通量测序方法,研究了不同时期各级生物滤池的细菌群落结构,分析了各级生物滤池的水质参数及水处理效果。结果表明:实验筛选出37 个门和513个细菌属,第3级生物滤池整体微生物群落丰富度和多样性均高于第1级和第2级生物滤池,第2级和第3级生物滤池微生物群落相似性最高。在门水平上,优势菌为变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes);在属水平上,发现了起硝化作用的亚硝化单胞菌属Nitrosomonas和硝化螺菌属Nitrospira;实验还发现该系统生物滤池可能存在功能上的浪费现象。该系统的细菌群落结构有稳定的演替模式,生物膜微生物群落变化对水质有一定程度的动态响应,MuricaudaMaribacter等反硝化细菌对硝态氮浓度的变化作用不明显。  相似文献   

12.
为探究微纳米曝气对水库沉积物细菌及磷功能菌群落的影响,以三明市东牙溪水库为研究对象,通过Illumina高通量测序,分析了曝气前后沉积物细菌、聚磷菌与有机解磷菌的群落组成、结构及其与环境因子的相关性。结果表明,微纳米曝气对底部产生充氧作用,进而对沉积物微生物的群落造成一定影响,微纳米曝气后,变形菌门(Proteobacteria)的相对丰度上升了24.7%,厚壁菌门(Firmicutes)上升了8.3%,而绿弯菌门(Chloroflexi)下降了5.9%,酸杆菌门(Acidobacteria)下降了7.0%。曝气前,沉积物中聚磷菌的优势菌属包括Syntrophus(26.79%)、Anaeromyxobacter(14.6%)、Nitrospira(12.6%)和Anaerolinea(11.3%);而曝气后,聚磷菌优势菌属则为Pseudomonas(65.1%)和Clostridium(22.9%)。有机解磷菌的优势菌属在微纳米曝气前后同样发生了改变:在曝气前,优势菌属为AzospiraMesorhizobium、PseudomonasChelatococcusVariovorax,分别占8.6%、5.4%、5.3%、5.2%、和5.2%;在曝气后,优势菌属则为AzospiraVariovoraxChelatococcusPseudomonasAcidovorax,分别占11.3%、6.5%、6.1%、5.9%和5.8%。冗余分析结果表明,不管是聚磷菌还是有机解磷菌,其群落组成与沉积物表层的溶解氧(DO)均显著相关(P<0.05)。微纳米曝气工程的实施,对水库沉积物微生物的群落组成、结构有一定影响。  相似文献   

13.
为探究不同富营养化水体沉积物中细菌群落结构的差异及驱动因素,以白洋淀表层沉积物细菌为研究对象,通过高通量测序方法,分析了2种富营养水平下细菌群落结构组成、多样性以及与环境因子的相关性。结果表明,细菌群落多样性随富营养化水平升高而下降;重度和中度富营养化水平下的细菌群落结构有差异,重度富营养化水平下绿弯菌门丰度显著提高。总体而言,不同污染程度水体沉积物细菌群落结构在门水平上没有明显差异,沉积物中的优势菌门依次为变形菌门(31%~43%)、绿弯菌门(10%~21%)和拟杆菌门(9%~20%)。微生物群落与环境因子相关性热图表明,上覆水TP和${{\rm{NH}}_4^ + }$-N、底泥TP和${{\rm{NO}}_3^ - }$-N是白洋淀水体底泥细菌群落多样性的主要影响因素。白洋淀不同富营养化水体沉积物细菌多样性存在差异,磷含量是细菌群落结构的制约因素。  相似文献   

14.
研究采用猪粪与城市污水厂脱水污泥以5种不同VS比例(1:0,2:1,1:1,1:2和0:1)进行中温厌氧消化实验,以研究反应器在不同配比下的产甲烷特性,同时结合16S rRNA扩增子测序技术分析了消化过程中微生物组成的多样性变化。实验结果表明,添加猪粪能明显提升消化效率,当猪粪与污泥以2:1混合消化时甲烷累计产量最高可达684 L·kg-1VS,比污泥单独消化提升了120%。2:1组的VS去除率可达63.1%,且运行稳定,没有出现明显的酸抑制现象。随着猪粪的添加,优势菌种演替为Bacteroides、Clostridium、Methanosaeta和Methanosarcina。冗余分析结果表明共消化组中甲烷产生主要以氢营养型途径为主。添加猪粪参与共消化能明显提高微生物群落多样性,促进菌种间的协同作用,从而提升有机质转化效率。  相似文献   

15.
微生物群落在活性污泥中发挥有重要作用,为了解采用活性污泥法的城市污水处理厂微生物群落特征和群体感应调控作用,采集天津市某城市污水处理厂活性污泥样品,采用高通量测序对其微生物群落特征进行解析,并分析其群体感应调控作用。结果表明,该污水处理厂一年间活性污泥样品的微生物多样性和微生物群落结构存在一定差异性,主要是由于冬春季节发生了污泥膨胀。Ferruginibacterf_Saprospiraceae_unclassified、Terrimonasf_Blastocatellaceae_unclassified和metagenome等是该污水处理厂中主要优势菌属,冬春季节引发污泥膨胀的主要菌属是Candidatus Microthrix。群体感应调控作用分析表明C6-HSL能够抑制污泥膨胀,3OC12-HSL能够调控促进多糖的产生,f_Saprospiraceae_unclassified、f_Caldilineaceae_unclassified、SWB02、OLB12是主要的C6-HSL产生菌,f_Bacteroidetes_vadinHA17_unclassified是3OC12-HSL的群体淬灭菌。基于高通量测序的Tax4fun功能预测分析表明5月份污水处理厂的脱氮除磷性能均略逊于其他月份。  相似文献   

16.
针对苏州某城市污水处理厂改良型UNITANK工艺冬季出水水质波动大的问题,采用模型分析了改良型UNITANK工艺的周期性运行特征,通过Illumina MiSeq高通量测序对改良型UNITANK工艺冬季活性污泥的微生物种群结构进行了分析。结果表明,冬季改良型UNITANK工艺缺氧池反硝化充分,边池的均匀曝气导致边池前端和中段硝化不充分,周期性出水氨氮、溶解性磷酸盐的质量浓度逐渐升高。微生物种群结构分析结果表明:冬季微生物多样性较高,独特的工艺运行方式会对生物多样性产生影响;SaprospiraceaeNitrosomonasNitrospira作为冬季活性污泥中的优势菌属,保证了改良型UNITANK工艺内生物脱氮除磷功能的发挥。  相似文献   

17.
为探究长荡湖入湖河流微生物群落结构特征及与环境因子的响应关系,在综合考虑主要入湖河流和污染源类型等因素的基础上进行分组,分析入湖河流中溶解氧(DO)、pH、氮磷比(TN/TP)、水温(WT)、总有机碳(TOC)、总氮(TN)和总磷(TP)共7个理化因子的分布特征。基于16S rRNA高通量测序技术并结合Circos、ANOSIM和冗余分析(RDA)等方法分析微生物群落结构特征的差异以及微生物群落与理化因子的关系。结果表明:不同污染类型的长荡湖入湖河流中优势菌门、菌属种类相似,但相对丰度却有所差别。优势菌门包括变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和拟杆菌门(Bacteroidetes);优势菌属包含hgcI clade、CL500-29 marine group、Acinetobacter、Comamonadaceae-Unclassified和Hydrogenophaga。ANOSIM分析表明长荡湖入湖河流微生物群落结构特征与污染源类型相关。冗余分析(RDA)结果显示pH、TP与长荡湖入湖河流的优势菌门呈显著相关(P<0.05);DO、pH与长荡湖入湖河流的优势菌属呈显著相关(P<0.05)。入湖河流的微生物群落在门、属分类水平上具有较高多样性且与污染源类型和理化因子相关,这为长荡湖入湖河流污染防治和生态修复提供了数据支撑。  相似文献   

18.
采用中试规模微压内循环生物反应器(MPSR)处理某北方城市新区污水处理厂沉砂池出水,考察了高悬浮物进水条件下反应器污染物处理效果及污染物的去除特性,利用高通量测序对微生物群落结构进行分析。MPSR 经450 d的运行结果表明,受春季冰雪融化和夏季降雨影响,反应器进水中SS质量浓度平均值在1—5月提高至约800 mg·L−1,在5—8月达到约2 700 mg·L−1,运用SPSS对进水SS与COD进行相关性分析,二者为正相关,皮尔逊相关系数为0.682。高悬浮物进水使得系统内MLSS质量浓度增加至12 000 mg·L-1,而MLVSS质量浓度基本保持在3 000~5 000 mg·L−1,SVI下降至50 mL·g−1。在不同进水负荷条件下,MPSR出水COD、TN、TP质量浓度始终保持在26、14、0.28 mg·L−1以下,达到《城镇污水处理厂污染物排放标准》一级A排放标准。高通量测序结果表明MPSR内微生物结构丰富,系统内好氧反硝化菌ThermomonasTerrimonas、反硝化除磷菌Dechloromonas等多重功能微生物共存。MPSR内丰富的微生物结构使其在高悬浮物冲击下仍可以保持稳定的处理效果。  相似文献   

19.
在实验室规模续批式反应器(SBR)内,采用人工配水作为系统进水,以乙酸钠为唯一碳源,限制进水磷浓度,调整适宜的运行方式对活性污泥进行驯化,培养富集聚糖菌。90 d的培养过程中,系统的进水COD浓度始终维持在260 mg/L左右,进水PO43--P浓度从20 mg/L逐渐降至2 mg/L,系统除磷能力逐渐丧失。系统内活性污泥的TP/TSS从40.5%降至10.4%,污泥中的糖原/TSS从14.5%增至38.2%,同时COD去除率能保持在90%以上,说明系统中成功富集聚糖菌。采用454高通量测序法分析该系统的活性污泥菌群结构,发现α-proteobacteria,β-proteobacteria,γ-proteobacteria 3类细菌占微生物总量的比例达83.78%。在属的等级上,Tepidicella占活性污泥菌群的比例最高,为20.60%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号