首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Remedial efforts at Superfund sites across the country focus on groundwater contaminant plumes that have been produced by contributions from multiple parties. Allocating cleanup costs between the parties in a fair and equitable manner can be a problem of substantial complexity. Considerable time and money may be spent determining the amount of contamination attributable to each party in order to apportion liability. Contaminant plumes that have evolved over long periods of time may affect large volumes of groundwater and require extensive remediation. Pump and treat remedial costs are driven by both the volume of water extracted and the mass of contaminants removed. Allocation methods based solely on the mass of contaminants contributed by each party are inadequate in this setting since they do not account for both components of the remedial costs. This paper presents an approach for equitably allocating remedial costs when addressing overlapping or commingled groundwater plumes. The method accounts for the major elements driving the costs of remediating dispersed contaminant plumes.  相似文献   

2.
Remedial efforts at Superfund sites across the country focus on groundwater contaminant plumes that have been produced by contributions from multiple parties. Allocating cleanup costs between the parties in a fair and equitable manner can be a problem of substantial complexity. Considerable time and money may be spent determining the amount of contamination attributable to each party in order to apportion liability. Contaminant plumes that have evolved over long periods of time may affect large volumes of groundwater and require extensive remediation. Pump and treat remedial costs are driven by both the volume of water extracted and the mass of contaminants removed. Allocation methods based solely on the mass of contaminants contributed by each party are inadequate in this setting since they do not account for both components of the remedial costs. This paper presents an approach for equitably allocating remedial costs when addressing overlapping or commingled groundwater plumes. The method accounts for the major elements driving the costs of remediating dispersed contaminant plumes.  相似文献   

3.
The effect of annual variations in the daily average soil temperatures, at different depths, on the calculation of pesticide leaching potential indices is presented. This index can be applied to assess the risk of groundwater contamination by a pesticide. It considers the effects of water table depth, daily recharge net rate, pesticide sorption coefficient, and degradation rate of the pesticide in the soil. The leaching potential index is frequently used as a screening indicator in pesticide groundwater contamination studies, and the temperature effect involved in its calculation is usually not considered. It is well known that soil temperature affects pesticide degradation rates, air-water partition coefficient, and water-soil partition coefficient. These three parameters are components of the attenuation and retardation factors, as well as the leaching potential index, and contribute to determine pesticide behavior in the environment. The Arrhenius, van't Hoff, and Clausius-Clapeyron equations were used in this work to estimate the soil temperature effect on pesticide degradation rate, air-water partition coefficient, and water-soil partition coefficient, respectively. The relationship between leaching potential index and soil temperature at different depths is presented and aids in the understanding of how potential pesticide groundwater contamination varies on different climatic conditions. Numerical results will be presented for 31 herbicides known to be used in corn and soybean crops grown on the municipality of S?o Gabriel do Oeste, Mato Grosso do Sul State, Brazil.  相似文献   

4.
The raw water quality and associations between the factors considered as threats to water safety were studied in 20 groundwater supplies in central Finland in 2002-2004. Faecal contaminations indicated by the appearance of Escherichia coli or intestinal enterococci were present in five small community water supplies, all these managed by local water cooperatives. Elevated concentrations of nutrients in raw water were linked with the presence of faecal bacteria. The presence of on-site technical hazards to water safety, such as inadequate well construction and maintenance enabling surface water to enter into the well and the insufficient depth of protective soil layers above the groundwater table, showed the vulnerability of the quality of groundwater used for drinking purposes. To minimize the risk of waterborne illnesses, the vulnerable water supplies need to be identified and appropriate prevention measures such as disinfection should be applied.  相似文献   

5.
During the last decade, nanofiltration (NF) made a breakthrough in drinking water production for the removal of pollutants. The combination of new standards for drinking water quality and the steady improvement of the nanofiltration process have led to new insights, possible applications and new projects on lab-scale, pilot scale and industrial scale. This paper offers an overview of the applications in the drinking water industry that have already been realised or that are suggested on the basis of lab-scale research. Applications can be found in the treatment of surface water as well as groundwater. The possibility of using NF for the removal of hardness, natural organic material (NOM), micropollutants such as pesticides and VOCs, viruses and bacteria, salinity, nitrates, and arsenic will be discussed. Some of these applications have proven to be reliable and can be considered as known techniques; other applications are still studied on laboratory scale. Modelling is difficult due to effects of fouling and interaction between different components. The current insight in the separation mechanisms will be briefly discussed.  相似文献   

6.
Sorption and cosorption of organic contaminant on surfactant-modified soils   总被引:5,自引:0,他引:5  
Gao B  Wang X  Zhao J  Sheng G 《Chemosphere》2001,43(8):1095-1102
Three kinds of soils were modified with the cationic surfactants, hexadecyltrimethylammonium (HDTMA) bromide and tetramethylammonium (TMA) bromide to increase their sorptive capabilities. Sorption of chlorobenzene in simulated groundwater by these soils was investigated. HDTMA-modified soil has a higher ability to sorb chlorobenzene from simulated groundwater than unmodified soil. TMA-modified soil did not show the superiority. HDTMA thus can be used to modify soil to improve its sorption capability. Cosorption of chlorobenzene in simulated groundwater in the absence or presence of nitrobenzene and dichloromethane on HDTMA-modified soil was also investigated. Nitrobenzene facilitated sorption of chlorobenzene on all HDTMA-modified soil. Dichloromethane did not influence the sorption of chlorobenzene by HDTMA-modified soil. The results suggest that HDTMA-modified soil is a highly effective sorbent for chlorobenzene and multiple organic compounds did not impede the uptake of chlorobenzene.  相似文献   

7.
土地利用变更的土壤及地下水污染调查方法及实例   总被引:8,自引:0,他引:8  
以南京大厂区某地块的土壤及地下水污染调查为实例,提出了资料收集、源项分析、监测因子筛选、监测布点.场地地质水文勘探和土壤及地下水采样分析的土壤及地下水污染调查方法,探讨了评价标准和确定土壤及地下水污染范围的方法。  相似文献   

8.
土壤、地下水中有机污染物的就地处置   总被引:1,自引:0,他引:1  
有机化合物对土壤、地下水的污染已引起世界各国的普遍关注.地层介质中的有机物主要以自由态、挥发态、溶解态和固态4种形态存在.有机污染物的自然降解能力较差,如不进行人工清除,在自然环境中它们可能存留长达几十年之久,对土壤、地下水资源构成长期的威胁.传统的开挖处理技术不仅费用昂贵,而且当贮油设施的地表被利用时则无法进行开挖处理(如有建筑物等).近年来,以地下冲洗法、土壤抽水法和地下水曝气法为代表的有机污染物就地处置技术得到了迅速的发展.本文对这3种技术进行概要的介绍,总结指出决定这些技术可能性的主要因素是地层介质的通透能力,有机物的挥发、溶解能力及其可生物降解能力,并列出目前的主要有机污染物挥发、溶解及生物降解能力的相对强弱作为制定具体处置技术的参考指标.  相似文献   

9.
Long Ye  Hong You  Jie Yao  Xi Kang  Lu Tang 《Chemosphere》2013,90(10):2493-2498
Seasonal variation and influencing factors of perchlorate in snow, surface soil, rain, surface water, groundwater and corn were studied. Seven hundreds and seventy samples were collected in different periods in Harbin and its vicinity, China. Perchlorate concentrations were analyzed by ion chromatography–electrospray mass spectrometry. Results indicate that fireworks and firecrackers display from the Spring Festival to the Lantern Festival (February 2, 2011–February 17, 2011) can result in the occurrence of perchlorate in surface soil and snow. Perchlorate distribution is affected by wind direction in winter. Melting snow which contained perchlorate can dissolve perchlorate in surface soil, and then perchlorate can percolate into groundwater so that perchlorate concentrations in groundwater increased in spring. Perchlorate concentrations in groundwater and surface water decrease after rainy season in summer. Groundwater samples collected in the floodplain areas of the Songhua River and the Ashi River contained higher perchlorate concentrations than that far away with the rivers. The corns have the ability to accumulate perchlorate.  相似文献   

10.
PCDD/Fs are hydrophobic organic substances and strongly sorbing to soil particles. Once adsorbed to soil particles they are believed to be virtually immobile. However, research in the last decades confirmed that strong sorbing contaminants may reach the groundwater via colloid-facilitated transport. This pathway has not been investigated before in Vietnam. Ma Da area, 100 km north of Ho Chi Minh City, was repeatedly sprayed during the Vietnam War (1962–1971) with herbicides like Agent Orange containing, beside others, the teratogenic contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). 11 surface soil samples and 12 water samples were collected in Ma Da area for analysis of PCDD/Fs in solids. Soil TCDD concentrations ranged from 1–41 ppt with a mean of 8.8 ppt and a mean I-TEQ of 9.7 ppt. Two surface water samples showed colloid bound TCDD (7 and 19 ppt). Groundwater samples showed elevated colloid bound PCDD concentrations (mean 770 ng/kg), mainly octachlorodibenzo-p-dioxin. Groundwater colloids separated by filtration did not show any TCDD. The results support that TCDD/Fs can be relocated from the top soil to the groundwater by colloidal pathway. They did not provide evidence that the dioxins bound to groundwater colloids are leftovers from the Second Indochinese War. However, this study reinforces that the colloidal transport pathway has to be included investigating the relocation of strong sorbing organic contaminants.  相似文献   

11.
Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal–phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the soil amended with biochar removed groundwater Pb, Zn, and Cd by 97.4 %, 53.4 %, and 54.5 %, respectively. Meanwhile, the metals from both groundwater and soil itself were immobilized with the amendments, with the leachability of the three metals in the CaCl2 and TCLP extracts being reduced by up to 98.1 % and 62.7 %, respectively. Our results indicate that the integrated chemical immobilization and pump-and-treat method developed in this study provides a novel way for simultaneous remediation of both metal-contaminated soil and groundwater.  相似文献   

12.
Contaminated sites pose a significant threat to groundwater resources worldwide. Due to limited available resources a risk-based prioritisation of the remediation efforts is essential. Existing risk assessment tools are unsuitable for this purpose, because they consider each contaminated site separately and on a local scale, which makes it difficult to compare the impact from different sites. Hence a modelling tool for risk assessment of contaminated sites on the catchment scale has been developed. The CatchRisk screening tool evaluates the risk associated with each site in terms of its ability to contaminate abstracted groundwater in the catchment. The tool considers both the local scale and the catchment scale. At the local scale, a flexible, site specific leaching model that can be adjusted to the actual data availability is used to estimate the mass flux over time from identified sites. At the catchment scale, a transport model that utilises the source flux and a groundwater model covering the catchment is used to estimate the transient impact on the supply well. The CatchRisk model was tested on a groundwater catchment for a waterworks north of Copenhagen, Denmark. Even though data scarcity limited the application of the model, the sites that most likely caused the observed contamination at the waterworks were identified. The method was found to be valuable as a basis for prioritising point sources according to their impact on groundwater quality. The tool can also be used as a framework for testing hypotheses on the origin of contamination in the catchment and for identification of unknown contaminant sources.  相似文献   

13.
Chlorofluorocarbons CFC-11 (CCl(3)F), CFC-12 (CCl(2)F(2)), and CFC-113 (CCl(2)F-CClF(2)) are used in hydrology as transient tracers under the assumption of conservative behavior in the unsaturated and saturated soil zones. However, laboratory and field studies have shown that these compounds are not stable under anaerobic conditions. To determine the degradation rates of CFCs in a tropical environment, atmospheric air, unsaturated zone soil gas, and anoxic groundwater samples were collected in Araihazar upazila, Bangladesh. Observed CFC concentrations in both soil gas and groundwater were significantly below those expected from atmospheric levels. The CFC deficits in the unsaturated zone can be explained by gas exchange with groundwater undersaturated in CFCs. The CFC deficits observed in (3)H/(3)He dated groundwater were used to estimate degradation rates in the saturated zone. The results show that CFCs are degraded to the point where practically no (<5%) CFC-11, CFC-12, or CFC-113 remains in groundwater with (3)H/(3)He ages above 10 yr. In groundwater sampled at our site CFC-11 and CFC-12 appear to degrade at similar rates with estimated degradation rates ranging from approximately 0.25 yr(-1) to approximately 6 yr(-1). Degradation rates increased as a function of reducing conditions. This indicates that CFC dating of groundwater in regions of humid tropical climate has to be carried out with great caution.  相似文献   

14.
The Fallacies of Concurrent Climate Policy Efforts   总被引:1,自引:0,他引:1  
Marian Radetzki 《Ambio》2010,39(3):211-222
Climate policy has assumed an extreme degree of urgency in the international debate in recent years. This article begins by taking a critical look at the scientific underpinnings of the efforts to stabilize the climate. It points to several serious question marks on the purported relationship between greenhouse gas emissions and global warming, and expresses distrust about claims of impending catastrophes related to rising sea levels, hurricanes, and spread of infectious disease. It then reviews the concurrent climate policy efforts and concludes that they are incoherent, misguided and unduly costly, and that they have so far had no perceptible impact on anthropogenic greenhouse gas emissions. The exceedingly ambitious policy plans currently under preparation suffer from similar fallacies. For these reasons, but also because of the remaining scientific doubts and the exorbitant costs that have to be incurred, skepticism is expressed about the preparedness to implement the climate policy plans currently on the table.  相似文献   

15.
BACKGROUND, AIM AND SCOPE: Pesticides are often found in soil as a result of their application to control pests. They can be transported on soil particles to surface waters or they can lixiviate and reach other environmental compartments. Soil modification with amendments, such as sewage sludge, and with surfactants, h been proposed to reduce pesticide environmental fate. METHODS: The sorption of atrazine, methidathion and diazinon using the batch technique has been studied on non-modified soil and soil modified with sewage sludge and cationic surfactants, as well as the effect of their addition on soil properties such as organic carbon (OC) content and exchange cations. RESULTS AND DISCUSSION: The OC content of the surfactant modified soils was the highest with the surfactant with the longest hydrocarbon chain (hexadecyltrimethyl ammonium bromide, HDTMA). The results of the OC content run in parallel with the increase in pesticide retention. When the sorption was n malized to soil OC content, the retention induced by addition of HDTMA was still the highest, which is an indication that the organic matter derived from the organic cations is a more effective medium to retain dissolved contaminants, than organic matter from native soil. The addition of sewage sludge to the soil did only result in a slight increase of the soil CEC and, hence, moderately affected the ability of the cationic surfactant to retain the pesticides. CONCLUSIONS: The addition of cationic surfactants to soil would possibly reduce the movement to groundwater of atrazine, methidathion and diazinon. In the case of HDTMA, the decrease in sorption at high surfactant loadings was very slow, being that the surfactant was able to retain the pesticides at concentration values which clearly exceeded the monolayer coverage. RECOMMENDATIONS AND PERSPECTIVES: Contamination by pesticides, which are present in the soil due to their direct input in this medium or to spills or illegal tipping, may be hindered from migration to groundwater by application of a cationic surfactant.  相似文献   

16.
Chlorinated ethenes (CE) are among the most frequent contaminants of soil and groundwater in the Czech Republic. Because conventional methods of subsurface contamination investigation are costly and technically complicated, attention is directed on alternative and innovative field sampling methods. One promising method is sampling of tree cores (plugs of woody tissue extracted from a host tree). Volatile organic compounds can enter into the trunks and other tissues of trees through their root systems. An analysis of the tree core can thus serve as an indicator of the subsurface contamination. Four areas of interest were chosen at the experimental site with CE groundwater contamination and observed fluctuations in groundwater concentrations. CE concentrations in groundwater and tree cores were observed for a 1-year period. The aim was to determine how the CE concentrations in obtained tree core samples correlate with the level of contamination of groundwater. Other factors which can affect the transfer of contaminants from groundwater to wood were also monitored and evaluated (e.g., tree species and age, level of groundwater table, river flow in the nearby Plou?nice River, seasonal effects, and the effect of the remediation technology operation). Factors that may affect the concentration of CE in wood were identified. The groundwater table level, tree species, and the intensity of transpiration appeared to be the main factors within the framework of the experiment. Obtained values documented that the results of tree core analyses can be used to indicate the presence of CE in the subsurface. The results may also be helpful to identify the best sampling period for tree coring and to learn about the time it takes until tree core concentrations react to changes in groundwater conditions. Interval sampling of tree cores revealed possible preservation of the contaminant in the wood of trees.  相似文献   

17.
Infiltration basins are frequently used for stormwater drainage. Because stormwater is polluted in highly toxic compounds, assessment of pollution retention by infiltration basins is necessary. Indeed, if basins are not effective in trapping pollution, deep soil and groundwater may be contaminated. This study's objective is to investigate soil pollution in infiltration basins: spatial distribution of soil pollution, optimisation of the number of soil samples and a contamination indicator are presented. It is part of a global project on long-term impact of stormwater infiltration on groundwater. Soil sampling was done on a basin in suburban Lyon (France). Samples were collected at different depths and analysed for nutrients, heavy metals, hydrocarbons and grain size. Pollutant concentrations decrease rapidly with depth while pH, mineralisation and grain size increase. Sustainable metal concentrations are reached at a 30-cm depth, even after 14 years of operation; hydrocarbon pollution is deeper. Principal component analysis shows how pollutants affect each level. The topsoil is different from other levels. Three specifically located points are enough to estimate the mass of pollution trapped by the basin with a 26% error. The proposed contamination indicator is calculated using either average level concentrations or maximum level concentrations. In both cases, the topsoil layer appears polluted but evaluation of lower levels is dependent on the choice of input concentrations.  相似文献   

18.
Heavy-metal pollution and arseniasis in Hetao region, China   总被引:1,自引:0,他引:1  
Zhang H 《Ambio》2004,33(3):138-140
In the Hetao region in northern China drinking water has become toxic due to the presence of arsenic (As) and other heavy metals in soil and water. The 7 counties in this region cover approx. 6100 km2, and in all 180,000 people are suffering from the toxic effects of contaminated drinking water. However, very few studies have been carried out in the region on the possible source of this arsenic. This paper is based on studies of the distribution of heavy metals in soil and groundwater. Results show that the average content of As is 0.483 microg g(-1) in groundwater and 13.74 microg g(-1) in soil. These levels are higher than the drinking water standard of 0.05 microg g(-1) recommended by the World Health Organization in 1984, and for the local background level in soil (5.20 microg g(-1)). This heavy-metal content in water and soil decreases gradually with increasing distance from the contaminated area, which fronts the Yin Mountains. The ratios of the Pb and Sr isotope contents in water are closely related to the ratios found in the water of the regions' mining area, and the ratios in soil correspond to the content of As in groundwater and soil in the area where pathological changes have been detected. Results suggest that the contaminants originate in the ore deposit zone fronting Yin mountains in the upper reaches of the Hetao Region.  相似文献   

19.
Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.  相似文献   

20.
农业管理实践对除草剂环境行为的影响   总被引:1,自引:0,他引:1  
除草剂的土壤环境行为与受人为控制的农业管理实践有密切的关系。本文通过文献调研综合分析了农田灌溉、耕作制度、施肥、作物秸秆还田和除草剂施用量等农业管理实践对除草剂土壤环境行为的影响 ,并据此提出了减轻除草剂污染地下水的若干思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号