首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
欧盟15国2012年的污泥产生量约为800万t,年人均产生量为21 kg。欧盟15国均采用污泥厌氧消化和污泥热干化等污泥处理方法,主要采用污泥农业利用和污泥焚烧两种处置方法。爱尔兰和葡萄牙的农业利用比例占本国污泥处置量的90%,荷兰基本采用污泥焚烧的方式进行污泥处置。根据现有情况预测:污泥的厌氧消化作为污泥脱水、无害和化学能源利用的方式具有重要的竞争力,污泥的热干化会结合工业焚烧产生的废热进行,处置方式将继续限制填埋而发展焚烧和农业利用方式。  相似文献   

2.
三种典型的污泥发电工艺   总被引:2,自引:0,他引:2  
污泥发电是城市污水处理厂进行污泥合理开发利用的技术措施之一,是污泥实行减量化、稳定化、无害化、资源化的良好方法,本文介绍了3种典型的污泥发电工艺:污泥焚烧发电;污泥厌氧消化产生沼气、通过燃气轮机组发电;污泥厌氧消化产生沼气、进而通过改质制造氢气,经燃料电池发电。对污泥合理利用的规范化、科学化有一定的借鉴意义。  相似文献   

3.
厌氧消化特别适合处理含有高有机质的污泥。通过对墨尔本一个猪肉加工场的气浮污泥进行收集后,本实验探究了厌氧消化的沼气生成量以及不同温度对沼气生成量的影响,得出了沼气中甲烷(CH4)平均含量在60%以上;II相污泥厌氧消化产生的沼气累积量明显高于I相等的结论。沼气累积产量在先进行3天高温(55℃)后转移至中温(35℃)进行余下11天的II相厌氧发酵条件下达到最大值333 ml。墨尔本的东污水处理厂(Eastern Treatment Plant)在对生活污水应用生物处理法之后再对污泥进行厌氧发酵,每天产生沼气量约为40 000 m3且其发电量可供给40%的自身用电需求,真正达到污泥的减量化、无害化和资源化的利用,为中国污水处理厂大量污泥的积累问题提供了一条可行的解决途径。  相似文献   

4.
根据联合国政府间气候变化专门委员会(IPCC)提供的核算准则,结合生命周期评价(LCA),对我国常见的污泥处理处置路径包括填埋、焚烧、热解、好氧堆肥、厌氧消化和湿式空气氧化进行了碳排放核算,并对敏感因子污泥有机质含量进行了影响分析.结果表明,对于有机质含量40%~50%的脱水污泥(含水率80%),净碳排放排序为填埋>焚烧>热解>厌氧消化>好氧堆肥>湿式空气氧化;而对于有机质含量60%~70%的脱水污泥,排序为填埋>焚烧>热解>好氧堆肥>湿式空气氧化>厌氧消化.对不同污泥处理处置组合路径进一步分析表明,独立焚烧相对于污泥水泥窑协同处置和燃煤电厂混烧碳排放更低.水解-厌氧消化-土地利用组合路径因提高有机质利用率而降低碳排放.1t脱水污泥处理处置全生命周期碳排放分析的结果表明,当污泥有机质含量低于60%时,上述路径都会产生2.07~494.45kg CO2eq/t不等的碳排放;当污泥有机质含量达到60%时,热水解-厌氧消化-土地利用组合路径可以实现负碳排放,为-37.91kg CO2eq/t,厌氧消化及湿式空气氧化路径接近于零碳排放;当有机质含量达到70%时,湿式空气氧化、厌氧消化及组合路径均可以实现负碳排放.  相似文献   

5.
横滨市下水道普及率按人口计算达99.7%,已建成运营11家污水处理厂和2座污泥处理中心。污水处理厂产生的含水率99%的污泥通过管道输送到污泥处理中心后,经浓缩、消化及脱水后进行焚烧处置。消化池沼气用来发电或作为焚烧炉燃料,污泥焚烧灰以改良土、水泥原料等形式完全实现资源的综合利用。为减少化石燃料的使用并削减温室气体排放量,近年来横滨市还发展了污泥合成燃料技术。  相似文献   

6.
城市污泥是污水处理过程中所排放的固体废弃物。据报道,全国每天污水排放量4474万m^3,集中进行生化处理是今后污水处理的主流。在污水处理过程中,大约以平均0.32%的比例排放出部分污泥(含水75%,下同),亦即全国每天可排放污泥14.3万吨,每年高达5000余万吨。根据全国2000年环境保护规划纲要,到2000年我国污水处理率将达到20%-30%,届时可年排放污泥1000-1500万吨。  相似文献   

7.
文章在对常州市武进区礼嘉镇进行面源生物质废弃物调研的基础上详细比较了生物质废弃物发酵制备燃料乙醇技术、生物质废弃物发酵制沼气技术、生物质废弃物气化炉技术以及生物质废弃物焚烧发电技术,从技术、经济、应用前景等多方面考量并最终筛选出适合于礼嘉镇试点区域的生物质废弃物利用技术。在对所选技术的应用实例进行调查研究的基础上建立了太湖流域废弃生物质能源资源化的总体方案:本方案拟定在试点区域结合实际情况将部分不适宜用于发酵制备燃料乙醇的农作物秸秆以及禽畜粪便、生活污水污泥等各类生物质废弃物用于生物质发酵制沼气项目,以满足当地部分居民的日常生活所需,同时收集剩余适宜制备燃料乙醇的生物质秸秆用于建设具有广阔应用前景的生物质发酵制备乙醇项目,对体系中产生的污水污泥等废弃物以污泥亚临界水热处理技术予以预处理后用于发酵制备沼气项目。总体方案每年生产燃料乙醇1 875.7 t,生产沼气259.2万m3,副产有机肥1 874.8 t,产生经济效益1 608万元,10年运行期的净收益现值为12 555.4万元,是具有广阔前景且行之有效的循环经济方案,是推动自然生态和人类社会和谐发展的绿色经济方案。  相似文献   

8.
鉴于蒸汽爆破(简称"汽爆")预处理对污泥和餐厨垃圾联合厌氧消化的影响还鲜有报道,为探讨汽爆预处理对污泥和餐厨垃圾联合中温厌氧消化的促进效果及经济可行性,利用小型发酵罐在35℃下开展了未预处理污泥和餐厨垃圾联合消化、汽爆污泥单独消化、汽爆污泥和餐厨垃圾联合消化的试验,并进行能耗分析.结果表明,未预处理污泥与餐厨垃圾联合消化阶段,VS(挥发性固体)去除率为33.9%,沼气产率为311.0 mL/g(以投料VS计);汽爆污泥单独消化阶段,VS去除率和沼气产率均略高于未预处理污泥与餐厨垃圾联合消化阶段,但反应器ρ(NH4+-N)过高,影响产气稳定性,沼气φ(CH4)较低.汽爆污泥与餐厨垃圾联合消化阶段,VS去除率和沼气产率分别达到49.5%和420.5 mL/g,显著优于未预处理联合消化阶段.能耗分析表明,预处理的升温过程使汽爆预处理整体能耗偏高,但若能有效回收70%的热量,则汽爆预处理可提高污泥-餐厨垃圾联合中温厌氧消化工艺3.34 kW·h/t(以污泥量计)的能量产率.研究显示,汽爆预处理可提高污泥和餐厨垃圾联合中温厌氧消化工艺35.2%的沼气产率,但由于预处理能耗较高,预处理过程中热能的有效回收是汽爆预处理应用于污泥和餐厨垃圾联合中温厌氧消化经济可行的关键.   相似文献   

9.
本文对污泥焚烧残渣中重金属总量、形态分布及浸出毒性进行了试验研究,对比分析了厌氧消化污泥与未消化污泥焚烧残渣中Cd、Pb、Cr、Zn的浸出稳定行为,结果表明:厌氧消化污泥焚烧残渣中重金属Cd、Pb、Cr、Zn的含量明显低于未消化污泥;污泥经焚烧处理后,重金属的存在形态总体上都是从不稳定态向稳定态转移,这一趋势厌氧消化污泥更为明显;在重金属浸出方面,只有未消化污泥在600℃焚烧5 min1、5 min的残渣中Cd的浸出浓度高于标准允许值1 mg/L,其余均低于标准值。  相似文献   

10.
美国弗特克处理系统公司最近在科罗拉多州朗门特市(Longmont)成功地建立了一个地下污泥处理系统。该系统主要利用液相氧化处理技术将污泥转化为惰性灰分和可生物降解的液体。该液体再排至附近的常规污水处理厂就很容易进行处理。液相氧化污泥处理技术的成功应用为取代污泥倾倒法、深井注射法、土地施用、焚烧和堆肥提供了一个可供选择的方法。该工艺的主要设备是一个反应管,悬浮在由水泥浇制的普通钻井中。反应管的直径可以为10到15英吋,管深一英哩(见图1)。管内设有由垂直同心管组成的环状水槽供处理物流动。为保持管内一定的温度,管中悬浮有一热交换器。由于反应器具有很深的深  相似文献   

11.
通过分析广州市城镇污水、污泥产量及各处置方式城镇污泥量,并针对土地利用、建材利用、焚烧利用和卫生填埋等4种不同处置方式,计算污泥处置过程中的碳排放量,依据往年数据,构建多元回归模型,预测未来广州市碳排放量。结果表明,截至2020年底,广州市共有污水处理厂63座,处理能力为774万m3/d,城市污泥年产生量为104.78万t(含水率为80%,下同),处置方式主要以建材利用和焚烧发电为主,二氧化碳当量约为1 690.97×106 kg CO2-eq,以黄浦、白云和荔湾区排放最多。同时,预测2030年广州市城镇污泥产量将达到2 059.05万t,与此同时二氧化碳当量将达到34 134.48×106 kg CO2-eq,较2020年增长1 918.63%,因此为了“双碳”目标的实现,必须继续优化城镇污泥的处置方式。  相似文献   

12.
杜邦公司于1985年成立了废物少量化委员会,目的是为了减少公司的废物产生量并将其用作资源在内部消化。到1990年底其废物产生量已比1982年减少35%,每年大约可节约1000万美元的处理废物费。该公司计划到2000年把废物产生量再减少35%。该公司为了减少废物产生量,最近引入了环境中能接受的称为Suva的制冷剂代用品,以代替电冰箱、空调器等制冷系统中用的氟氯烃。  相似文献   

13.
中美两国污水处理规模大、碳排放基数高,污泥的处理与处置是污水处理厂碳排放的重要组成部分,合理的污泥管理策略是未来污水厂碳减排的关键。实地调研了中美6个大型典型污水处理厂的污泥处理设施和污泥处置路径,分析了中美两国不同典型的污泥处理处置工艺能量回收和碳排放的表现特征。结果表明:在不考虑碳补偿的情况下,中美6个污水处理厂中,华东A(中温厌氧消化+脱水+填埋/土地利用)、华东B(脱水+填埋/焚烧)、华东C(脱水+焚烧)、Hyperion(高温厌氧消化+脱水+农用)、OCSD(中温厌氧消化+脱水+农用)和Blue plains(热水解+中温厌氧消化+脱水+农用)的污泥处理处置路线的碳足迹分别为1410,1881,1914,471,402,405 kgCO2/t DS。考虑能源回收和资源化利用产生的碳补偿效果,中美6厂污泥处理处置的净碳排放分别为984,1681,1941,-183,-240,-315 kgCO2/t DS。中美6个污水厂碳补偿率分别为30.2%、10.6%、0%、138.9%、159.7%和177.9%。污泥厌氧消化和产物土地资源化利用是碳减排的关键,提升污泥有机质含量能够强化碳补偿效应,该研究结果可为我国污水处理厂低碳转型、污泥处理处置的无害化、减量化和低碳化提供参考。  相似文献   

14.
<正> 一套由日本千代田公司提供部分设备、仪表和技术,被山东省列为环境保护重点建设项目的“三泥焚烧”装置,最近在齐鲁石化公司胜利炼油厂一次开车成功,投入正常运行.“三泥焚烧”装置是为了解决胜利炼汕厂加工原油和处理污水过程中产生的含油污泥、剩余活性污泥、乳化油泥的二次污染问题而建设的,整个项目投资1000万元.这套装置主要有污泥预脱水、污泥脱水和乳化油泥处理、污泥焚烧三部分组成,其中第二部分是引进日本千代田公司的设备、仪表和技术.该装置建成投用后,每小时处理污泥  相似文献   

15.
为去除污泥厌氧消化生产沼气中的H2S有害污泥物,采用鹅卵石填料作为脱硫剂进行沼气直接脱硫处理,小试结果表明,当沼气中H2S含量高达2000mg/m^3时,在控制适当的运行条件下,对沼气中H2S有较好的脱硫效率,脱硫率〉98%,H2S含量低于20mg/m^3,采用空气再生处理后,其脱硫率可保持在98%以上。  相似文献   

16.
杜佳贵  江飞宇 《环境》1997,(10):16-17
一、引言不管污泥是否被消化,一个典型的污水处理厂必须处理大量低固体含量的污泥。对一个中等规模人口当量为100,000的处理厂来说,每天有多达700M~3的污泥要处理。污泥浓缩和消化可使之减少到每天250M~3,但即使如此仍有大量的污泥要处理。下面显示了那些可以使用或已经使用多年污泥处理方法。  相似文献   

17.
污泥的处理与处置是污水厂运行过程中碳排放的主要产生源之一。基于联合国政府间气候变化专门委员会(IPCC)的方法学原则,构建污泥处理处置过程中产生的碳排放及碳汇的核算方法,并以某污水厂污泥的处理处置过程为例,计算其典型工艺下运行的碳排放量,分析其碳排放特征并提出减排建议。结果表明:深度脱水和填埋是污泥处理处置碳排放的主要来源;污泥厌氧消化产生的沼气用于消化温度维持和干化工艺,具有显著的减排效应;污泥土地利用具有低碳排放效应特征,是污泥处理处置低碳发展的优选模式。  相似文献   

18.
随着社会经济的发展,污水的排放量越来越大,这不但加大了污水处理厂的负荷,同时,伴随污水处理所产生的污泥量也急剧地上升。以辽宁省为例,2006年已建成的30座城市污水处理厂,每天就大约产生1700吨的污泥(含水率80%),预计到2010年,辽亍省的城市污水处理厂污泥产生量将达到100万吨/年。可见,污泥的产生量正在逐年增长,但到目前为止有效的污泥处理设施不多,安全而有效的处理比例低,造成大量污泥还是被任意弃置,存在着极大的环境风险和隐患。  相似文献   

19.
<正>南方日报讯(记者/黄少宏)日前,广州市法制办发布《广州市城镇生活污水处理厂污泥处理处置管理办法(草案征求意见稿)》(以下简称《办法》)。《办法》拟规定,新建污水处理厂的污泥处理设施建设项目,实行与污水处理厂建设同步环评和验收制度。广州日产污泥1 848 t文件起草单位在《办法》起草说明中指出,2014年上半年,全市(十区两市)污水处理厂48座,处理污水量为69 152万t,脱水污泥(以含水率80%计)产生量33.45万t,平均每天1 848 t。目前,广州市污水处理厂污泥主要采用水泥窑协同处  相似文献   

20.
中温碱解预处理促进剩余污泥厌氧产甲烷的研究   总被引:1,自引:1,他引:0  
采用4 mol/L NaO H碱液在中温下处理城市生活污水处理厂剩余污泥6 h,对比原剩余污泥和中温碱解污泥厌氧消化产甲烷的能力,分析了中温碱解及厌氧消化过程中剩余污泥胞内物质的释放规律,结果表明:碱解预处理有效促进了有机物、氨氮的释放,对磷酸盐释放促进作用不明显。原剩余污泥的沼气转化效率为387.5 L/kg(以VS计,下同),中温碱解处理组的沼气转化效率为402.5 L/kg;中温碱解处理组沼气转化效率比原剩余污泥组高3.87%;中温碱解预处理提高了污泥减量化程度及甲烷产量。改进的Gompertz模型结果表明:碱解处理后剩余污泥最大甲烷产量为1 480.7 mL,最大产甲烷速率为77.8 mL/d,细菌产甲烷的延迟时间为3.38 d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号