首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
《Environmental Forensics》2013,14(3-4):357-366
On 23 July 1995, the oil tanker Sea Prince ran aground near Son Island, off the South Coast of Korea and spilled 5040 tons of crude and fuel oil into the marine environment. The effects of the Sea Prince oil spill on the marine environment have been investigated since 1996. The main objectives of this study were to find out the residual effects of beached oil and transport of dispersed oil into the subtidal area. Twenty-four PARs were analyzed and principal component analysis was performed to elucidate weathering status, bioaccumulation pattern, and input sources. There were signs of bioconcentration of oil-derived PAHs in mussels of stranded oil remained sites. However, environmental factors overwhelmed these so that all the bivalves studied showed similar pattern in the last two sampling campaigns. There was no significant evidence of transport of oil-derived PAHs into the subtidal environment. However, one station showed an exceptionally high concentration (923 ng/g dry weight), which implies the limited input of particle-bound PAHs into this confined area.  相似文献   

2.
Fifty-five seasonal PM2.5 samples were collected March 2003–January 2004 at Changdao, a resort island located at the demarcation line between Bohai Sea and Yellow Sea in Northern China. Changdao is in the transport path of the continental aerosols heading toward the Pacific Ocean in winter and spring due to the East Asia Monsoon. Solvent-extractable organic compounds (SEOC), organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC) were analyzed for source identification based on molecular markers. This data set provides useful information for the downstream site researchers of the Asian continental outflow. Total carbon (TC, OC+EC) was ∼18 μg m−3 in winter, ∼9 μg m−3 in spring and autumn and a large part of the TC was WSOC (33% in winter, >45% in the other seasons). Winter and spring were the high SEOC seasons with n-fatty acids the highest at ∼290 and ∼170 ng m−3, respectively, followed by n-alkanes at ∼210 and ∼90 ng m−3, and polycyclic aromatic hydrocarbons (PAHs) were also at high at ∼120 and ∼30 ng m−3. High WSOC/TC, low C18:1/C18 of fatty acids, and low concentrations of labile PAHs such as benzo(a)pyrene, together with back trajectory analysis suggested that the aerosols were aged and transported. PAHs, triterpane and sterane distributions provided evidence that coal burning was the main source of the continental outflow. The detection of levoglucosan and β-sitosterol in nearly all the samples showed the impact of biomass burning.  相似文献   

3.
The Athabasca Oil Sands are one of four natural oil sands deposits in Northern Alberta, Canada. As a number of new mines are planned in the area, there is a need to establish background levels of natural hydrocarbon release prior to these developments. To this end, various environmental samples were taken from selected tributaries in the oil sands region of the Athabasca River Basin and analysed by gas chromatography/mass spectrometry (GC/MS) for polycyclic aromatic hydrocarbons (PAHs) and their alkylated analogues. Samples were collected over 3 years (1998–2000) to provide an increased understanding of the spatial distribution, nature and extent of natural hydrocarbon release to the environment. Results indicated that levels of total PAHs were elevated in the tributaries (up to 34·7 μg/g) compared to the main stem Athabasca River (<2 μg/g). As expected, samples from the oil sands deposits contained the greatest amounts of PAHs and alkylated PAHs. Profiles of the alkylated PAH distributions were very similar, indicating that all the samples tested were from a common petrogenic source.  相似文献   

4.
Atmospheric transport of trace elements has been found to be an important pathway for their input to the ocean. TSP, PM10, and PM2.5 aerosol samples were collected over the Northern South China Sea in two cruises in 2003 to estimate the input of aerosol from continent to the ocean. About 23 elements and 14 soluble ions in aerosol samples were measured. The average mass concentration of TSP in Cruise I in January (78 μg m−3) was ∼twice of that in Cruise II in April (37 μg m−3). Together with the crustal component, heavy metals from pollution sources over the land (especially from the industry and automobiles in Guangzhou) were transported to and deposited into the ocean. The atmospheric MSA concentrations in PM2.5 (0.048 μg m−3 in Cruise I and 0.043 μg m−3 in Cruise II) over Northern South China Sea were comparable to those over other coastal regions. The ratio of non-sea-salt (NSS)-sulfate to MSA is 103-655 for Cruise I and 15-440 for Cruise II in PM2.5 samples, which were much higher than those over remote oceans. The estimated anthropogenic sulfate accounts for 83–98% in Cruise I and 63–95% in Cruise II of the total NSS-sulfate. Fe (II) concentration in the aerosols collected over the ocean ranged from 0.1 to 0.9 μg m−3, accounting for 16–82% of the total iron in the aerosol, which could affect the marine biogeochemical cycle greatly.  相似文献   

5.
6.
High mountains may serve both as condenser for vapor phase persistent organic pollutants (POPs) and as barrier/sink for particulate associated less volatile POPs. The fractionation of POPs along altitudinal profiles is of interest in understanding the role of high mountains in the atmospheric transport of POPs. In the present study, polycyclic aromatic hydrocarbons (PAHs) in a selected moss species, Hypnum plumaeformae WILS, from two altitudinal profiles on the northern slope of Nanling mountains in Southern China were analyzed and compared with those in air samples. The total PAH concentration in the mosses was 310–1340 ng g−1 dry weight, with phenanthrene being the most abundant. The distribution patterns of PAHs in the moss samples matched well with those in bulk atmosphere deposition in the adjacent source areas. The PAH distribution pattern in the mosses was a composite of both particle-associated and vapor phase PAHs, with heavy PAHs are susceptible to uptake/retention by mosses than light PAHs. A plot of log (Cmoss/Cair) against log Koa gave a good linear relationship in the log Kao range of 6.7–10.2. It is suggested that the widely spread moss, H. plumaeformae WILS, can be used as an effective tool in the biomonitoring of atmospheric PAHs pollution in East Asia. The concentrations of most PAHs in the mosses generally declined with increasing altitude. In addition, there was a shift in compound pattern with an increase in the proportion of light PAHs (2–3 rings), a decrease in heavy PAHs (5–6 rings) and a relatively stable content of 4-ring PAHs. A combination of particulate scavenging and cold condensation are proposed as the major mechanisms for the compositional fractionation of PAHs along the altitudinal profile.  相似文献   

7.
The Po Valley is the most important agricultural and industrial area of Adriatic basin. In this area there are several rivers which transport polycyclic aromatic hydrocarbons (PAHs) into the sea via suspended particulate matter. This study describes the persistence of PAHs in the deep and coastal sediments of the Northern Adriatic. Different environmental conditions were studied: salinity, temperature, sunlight, sediment particle size and organic matter in sediment. The average conditions in the deep areas of the Northern Adriatic are: salinity higher than 37, temperature lower than 11 °C, darkness and clayey sediments with a high organic matter content. These conditions increase the persistence of the PAHs in the deep area of the Northern Adriatic.  相似文献   

8.
This study attempts to determine the influence of air quality in a residential area near a medical waste incineration plant. Ambient air concentrations of polycyclic aromatic hydrocarbons (PAHs), PM10 and PM2.5 (PM—particulate matter) were determined by collecting air samples in areas both upwind and downwind of the plant. The differences in air pollutant levels between the study area and a reference area 11 km away from the plant were evaluated.Dichotomous samplers were used for sampling PM2.5 and PM10 from ambient air. Two hundred and twenty samples were obtained from the study area, and 100 samples were taken from a reference area. Samples were weighed by an electronic microbalance and concentrations of PM2.5 and PM10 were determined. A HPLC equipped with a fluorescence detector was employed to analyze the concentrations of 15 PAHs compounds adsorbed into PM2.5 and PM10.The experimental results indicated that the average concentrations of PM2.5 and PM10 were 30.34±17.95 and 36.81±20.45 μg m−3, respectively, in the study area, while the average ratio of PM2.5/PM10 was 0.82±0.01. The concentrations of PM2.5 and PM10 of the study area located downwind of the incinerator were significantly higher than the study area upwind of the incinerator (P<0.05).The concentration of PAHs in PM2.5 in the study area was 2.2 times higher than in the reference area (P<0.05). Furthermore, the benzo(a)pyrene concentrations in PM2.5 and PM10 were 0.11±0.05 ng m−3 and 0.12±0.06 ng m−3 in the study area, respectively. The benzo(a)pyrene concentrations of PM2.5 and PM10 in the study area were 7 and 5.3 times higher than in the reference area (P<0.05), respectively.The study indicated that the air quality of PM2.5, PM10 and PAHs had significant contamination by air pollutants emitted from a medical waste incineration factory, representing a public health problem for nearby residences, despite the factory being equipped with a modern air pollution control system.  相似文献   

9.
During the 2003 Chinese Arctic Research Expedition from the Bohai Sea to the high Arctic (37–80°N) aboard the icebreaker Xuelong (Snow Dragon), air samples were collected using a modified high-volume sampler that pulls air through a quartz filter and a polyurethane foam plug (PUF). These filters and PUFs were analyzed for particulate phase and gas phase polycyclic aromatic hydrocarbons (PAHs), respectively, in the North Pacific Ocean and adjacent Arctic region. The ∑PAHs (where ∑=15 compounds) ranged from undetectable level to 4380 pg m−3 in the particulate phase and 928–92 600 pg m−3 in the gas phase, respectively. A decreasing latitudinal trend was observed for gas-phase PAHs, probably resulting from temperature effects, dilution and decomposition processes; particulate-phase PAHs, however, showed poor latitudinal trends, because the effects of temperature, dilution and photochemistry played different roles in different regions from middle-latitude source areas to the high latitudes. The ratios of PAH isomer pairs, either conservative or sensitive to degradation during long-range transport, were employed to interpret sources and chemical aging of PAHs in ocean air. In this present study the fluoranthene/pyrene and indeno[123-cd]pyrene/benzo[ghi]pyrene isomer pairs, whose ratios are conservative to photo-degradation, implies that biomass or coal burning might be the major sources of PAHs observed over the North Pacific Ocean and the Arctic region in the summer. The isomer ratios of 1,7/(1,7+2,6)-DMP (dimethylphenanthrene) and anthracene/phenanthrene, which are sensitive to aging of air masses, not only imply chemical evolving of PAHs over the North Pacific Ocean were different from those over the Arctic, but reveal that PAHs over the Arctic were mainly related to coal burning, and biomass burning might have a larger contribution to the PAHs over the North pacific ocean.  相似文献   

10.
Recent studies have shown that geological emissions of methane are an important greenhouse-gas source. Remarkable amounts of methane, estimated in the order of 40–60 Tg yr?1, are naturally released into the atmosphere from the Earth's crust through faults and fractured rocks. The main source is natural gas, both microbial and thermogenic, produced in hydrocarbon-prone sedimentary basins and injected into the atmosphere through macro-seeps (onshore and offshore mud volcanoes and other seeps) and microseepage, an invisible but pervasive flux from the soil. This source is now evaluated for Europe on the basis of a literature survey, new field measurements and derived emission factors. The up-scaling criteria recommended by the EMEP/CORINAIR guidelines are applied to the local point and area source data.In Europe, 25 countries host oil and/or natural gas reservoirs and potentially, or actually, emit geological methane. Flux data, however, are available only from 10 countries: the onshore or offshore petroliferous sectors of Denmark, Italy, Greece, Romania, Spain, Switzerland, United Kingdom and Black Sea countries (Bulgaria, Ukraine, Georgia). Azerbaijan, whose emissions due to mud volcanism are known to be relevant, is included in the estimate.The sum of emissions, regional estimates and local measurements, related to macro-seeps leads to a conservative total value of about 2.2 Tg yr?1. Together with the potential microseepage fluxes from the petroliferous basins, estimated on the basis of the Total Petroleum System concept (around 0.8 Tg yr?1), the total European seepage is projected to 3 Tg yr?1. This preliminary figure would represent, in terms of magnitude, the second natural methane source for Europe after wetlands. The estimate will have to be refined by increasing the number of seepage measurements both on lands, where there is high potential for microseepage (e.g., Germany, Hungary, Romania, Ukraine, Belarus, Russia, Georgia) and in coastal marine areas (the North Sea, the Black Sea, offshore Greece and Italy) where emission factors and the extent of the underwater seeping area are not completely known.  相似文献   

11.
Partitioning of hydrophobic organic compounds to the interface between water and air may significantly affect the distribution and transfer of many xenobiotic chemicals between vapor and aqueous phases. The fluorescent probe, 1-methylperylene, was used to investigate the affinity of hydrophobic compounds for the water–air interface by varying the ratio of interfacial surface area to water volume in a fused-quartz cuvette. We found that the water–air/water interface partitioning coefficient [Kw−awi=1.2 mol cm-2awi/(mol ml-1w)] for this polycyclic aromatic hydrocarbon (PAH) was quantitatively consistent with partitioning to the same interface but from the airside, recently reported in the literature for less hydrophobic PAHs. Our results demonstrate significant partitioning from bulk water to the water/air interface for a hydrophobicity range relevant to many xenobiotic compounds. Anticipated implications of this process for the environmental chemistry of hydrophobic compounds include retarded gas-phase transport in unsaturated soils, bubble-mediated transport in water, droplet-mediated transport in the atmosphere, and photochemical reactions.  相似文献   

12.
13.
Twenty-four hour PM2.5 samples from a rural site, an urban site, and a suburban site (next to a major highway) in the metropolitan Atlanta area in December 2003 and June 2004 were analyzed for 19 polycyclic aromatic hydrocarbons (PAH). Extraction of the air samples was conducted using an accelerated solvent extraction method followed by isotope dilution gas chromatography/mass spectrometry determination. Distinct seasonal variations were observed in total PAH concentration (i.e. significantly higher concentrations in December than in June). Mean concentrations for total particulate PAHs in December were 3.16, 4.13, and 3.40 ng m?3 for the urban, suburban and rural sites, respectively, compared with 0.60, 0.74, and 0.24 ng m?3 in June. Overall, the suburban site, which is impacted by a nearby major highway, had higher PAH concentration than did the urban site. Total PAH concentrations were found to be well correlated with PM2.5, organic carbon (OC), and elemental carbon (EC) in both months (r2 = 0.36–0.78, p < 0.05), although the slopes from the two months were different. PAHs represented on average 0.006% of total PM2.5 mass and 0.017% of OC in June, compared with 0.033% of total PM2.5 and 0.14% of OC in December. Total PAH concentrations were also correlated with potassium ion (r2 = 0.39, p = 0.014) in December, but not in June, suggesting that in winter biomass burning can potentially be an important source for particulate PAH. Retene was found at a higher median air concentration at the rural site than at the urban and suburban sites—unlike the rest of the PAHs, which were found at lower levels at the rural site. Retene also had a larger seasonal difference and had the weakest correlation with the rest of the PAHs measured, suggesting that retene, in particular, might be associated with biomass burning.  相似文献   

14.
The concentrations of total gaseous mercury (TGM) in air over the southern Baltic Sea and dissolved gaseous mercury (DGM) in the surface seawater were measured during summer and winter. The summer expedition was performed on 02–15 July 1997, and the winter expedition on 02–15 March 1998. Average TGM and DGM values obtained were 1.70 and 17.6 ng m−3 in the summer and 1.39 and 17.4 ng m−3 in the winter, respectively. Based on the TGM and DGM data, surface water saturation and air-water fluxes were calculated. The results indicate that the seawater was supersaturated with gaseous mercury during both seasons, with the highest values occurring in the summer. Flux estimates were made using the thin film gas-exchange model. The average Hg fluxes obtained for the summer and winter measurements were 38 and 20 ng m−2 d−1, respectively. The annual mercury flux from this area was estimated by a combination of the TGM and DGM data with monthly average water temperatures and wind velocities, resulting in an annual flux of 9.5 μg m−2 yr−1. This flux is of the same order of magnitude as the average wet deposition input of mercury in this area. This indicates that reemissions from the water surface need to be considered when making mass-balance estimates of mercury in the Baltic Sea as well as modelling calculations of long-range transboundary transport of mercury in northern Europe.  相似文献   

15.
Road dust samples were collected from central Shanghai in winter (January) and summer (August), respectively. Sixteen polycyclic aromatic hydrocarbons (PAHs) in the United States Environmental Protection Agency (USEPA) priority-controlled list were determined by GC/MS. Total PAH (t-PAH) concentrations in winter samples ranged from 9176 to 32,573 ng g−1 with a mean value of 20,648 ng g−1, while they varied from 6875 to 27,766 ng g−1 in summer with an average of 14,098 ng g−1. Spatial variation showed that city park (CP) samples had the lowest t-PAH concentration, while industrial area (ID) and traffic area (TR) and commercial area (CO) were the most polluted, in both seasons. PAH homologues concentrations were getting higher with the more rings and higher molecular weight (HMW) in all areas. The study of effective factors showed that grain size was only a minor factor influencing the accumulation of PAHs, whereas total organic carbon (TOC) was found to be closely correlated with t-PAH concentration. Prevailing winds could directly affect on the spatial distribution of PAHs. Chemical source apportionment studies took the form of principal component analysis (PCA), followed by compositional analysis. It was demonstrated that road dust PAHs in central Shanghai mainly came from the mixing of traffic and coal combustion. The contribution percentages of pyrogenic and petrogenic sources were respectively 71.0% and 11.4% in winter, while they were, 64.9% and 14.1% in summer, respectively. Road dust PAHs in Shanghai city mostly came from local sources.  相似文献   

16.
Comparative biogeochemical studies performed on the same plant species in remote areas enable pinpointing interspecies and interregional differences of chemical composition. This report presents baseline concentrations of PAHs and trace elements in moss species Hylocomium splendens and Pleurozium schreberi from the Holy Cross Mountains (south-central Poland) (HCM) and Wrangell–Saint Elias National Park and Preserve (Alaska) and Denali National Park and Preserve (Alaska). Total PAH concentrations in the mosses of HCM were in the range of 473–2970 μg kg?1 (dry weight basis; DW), whereas those in the same species of Alaska were 80–3390 μg kg?1 DW. Nearly all the moss samples displayed the similar ring sequence: 3 > 4 > 5 > 6 for the PAHs. The 3 + 4 ring/total PAH ratios show statistically significant differences between HCM (0.73) and Alaska (0.91). The elevated concentrations of PAHs observed in some sampling locations of the Alaskan parks were linked to local combustion of wood, with a component of vehicle particle- and vapor-phase emissions. In HCM, the principal source of PAH emissions has been linked to residential and industrial combustion of coal and vehicle traffic. In contrast to HCM, the Alaskan mosses were distinctly elevated in most of the trace elements, bearing a signature of the underlying geology. H. splendens and P. schreberi showed diverse bioaccumulative capabilities of PAHs in all three study areas.  相似文献   

17.
《Environmental Forensics》2002,3(3-4):219-225
Naturally weathered oil residues from an arid dumpsite in Al-Alamein, Egypt were analyzed for monoaromatic and triaromatic steranes to demonstrate the utility of biomarker compounds in assessing the chemical composition changes during the degradation of the released oil residues in a terrestrial environment. The characterizations of individual aromatic compounds were based on gas chromatography/mass spectrometry (GC/MS) analyses. The results showed that triaromatic sterane distributions were similar in the oil residues of varying weathering degradation extents and correlated with a fresh crude oil sample of the Western Desert-sourced oil. Molecular ratios of triaromatic sterane compounds (ratios of C2820R /C2820S, C2720R /C2820R, and C2820S /[C2620R + C2720S ]) were proved to be suitable for source identification. Major changes in chemical compositions during weathering of the oil residues were the depletion of short chain mono- and tri-aromatic steranes in samples that had undergone extensive degradation. The results of triaromatic sterane distribution are in good agreement with weathering classification based on the analyses of saturate and aromatic hydrocarbons and the ratios of n -alkanes, PAHs and saturate biomarker compounds.  相似文献   

18.
An 80,000-km durability test was performed on two engines using diesel and biodiesel (methyl ester of waste cooking oil) as fuel in order to examine emissions resulting from the use of biodiesel. The test biodiesel (B20) was blended with 80% diesel and 20% methyl ester derived from waste cooking oil. Emissions of regulated air pollutants, including CO, HC, NOx, particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) were measured at 20,000-km intervals. The identical-model engines were installed on a standard dynamometer equipped with a dilution tunnel used to measure the pollutants. To simulate real-world driving conditions, emission measurements were made in accordance with the United States Environmental Protection Agency (USEPA) FTP transient cycle guidelines. At 0 km of the durability test, HC, CO and PM emission levels were lower for the B20 engine than those for diesel. After running for 20,000 km and longer, they were higher. However, the deterioration coefficients for these regulated air pollutants were not statistically higher than 1.0, implying that the emission factors do not increase significantly after 80,000 km of driving. Total (gaseous+particulate phase) PAH emission levels for both B20 and diesel decreased as the driving mileage accumulated. However, for the engine using B20 fuel, particulate PAH emissions increased as engine mileage increased. The average total PAH emission factors were 1097 and 1437 μg bhp h−1 for B20 and diesel, respectively. For B20, the benzo[a]pyrene equivalence emission factors were 0.77, 0.24, 0.20, 7.48, 5.43 and 14.1 μg bhp h−1 for 2-, 3-, 4-, 5-, 6-ringed and total PAHs. Results show that B20 use can reduce both PAH emission and its corresponding carcinogenic potency.  相似文献   

19.
《Chemosphere》2011,82(11):1517-1525
The importance of the annual and seasonal trends associated to the polycyclic aromatic hydrocarbons (PAHs) biomonitoring by pine needles are studied with a comprehensive use of univariate and multivariate analysis tools. For this purpose, four pine needle sampling campaigns (winter, spring, summer and autumn 2007) were carried out in 29 sites from Portugal. Needles from Pinus pinaster Ait. and Pinus pinea L. trees were collected from all year-classes available in each tree, corresponding to the different shoots of needles coming out every spring and the results of both species were treated separately. Annual trends of polycyclic aromatic hydrocarbons (PAHs) contamination indicate a general increase from the least to the most exposed year-classes, for all seasons. The mean values for the sum of 16 PAHs ranged from 71 ± 33 ng g−1 (dry weight – dw) for new year (2007) needles in the summer to 514 ± 317 ng g−1 (dw) for 2-year needles (2005) in the spring for P. pinea, and between 90 ± 50 ng g−1 (dw) for new year (2007) needles in the summer and 1212 ± 436 ng g−1 (dw) for 3-year needles (2004) in summer for P. pinaster. The seasonal evolution shows the highest concentrations in the winter, then declining to the lowest levels in the summer and rising again from summer to autumn. Principal component analysis confirmed differences between seasons and needle year-classes, more visible for P. pinea samples. The cooler seasons have more affinity towards the lighter more abundant PAHs, as do the older needles. Differences between both pine species are also evident.  相似文献   

20.
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20–25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A – Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application.Results showed that the total PAH emission factor varied from 41.9 μg km?1 to 612 μg km?1 in the gasohol vehicle, and from 11.7 μg km?1 to 27.4 μg km?1 in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 μg TEQ km?1 to 4.61 μg TEQ km?1 for the gasohol vehicle and from 0.0117 μg TEQ km?1 to 0.0218 μg TEQ km?1 in the ethanol vehicle.For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号